Aminoselenenylation of Alkenes: Syntheses of β-Phenylseleno Carbamates and β-Phenylseleno Cyanamides

Cosme G. Francisco, Rosendo Hernández, Elisa I. León, José A. Salazar,* and Ernesto Suárez Instituto de Productos Naturales Orgánicos, del CSIC, Carretera de La Esperanza 2, 38206 La Laguna, Tenerife, Spain

Abstract

β-(Phenylseleno)alkylcarbamates and β-(phenylseleno)alkylcyanamides have been synthesized in good yields by reaction of alkenes with carbamates and cyanamide, respectively, in presence of benzeneselenenyl chloride-silver tetrafluoroborate or N -phenylselenophthalimide- H^{+}. The subsequent reductive or oxidative removal of the phenylseleno group affords alkylcarbamates and alkylcyanamides, and allylic carbamates, cyanamides, and cyanimides.

The alkene amination reaction is of current interest in organic synthesis due to the important role of nitrogen functional groups in biologically active compounds. Those methods which involve the introduction of a phenylseleno group (aminoselenenylation of alkenes) are specially interesting owing to the versatility and easy manipulation of organoselenium compounds.

The scarce use of nitrogen reagents in nucleophilic intermolecular addition to alkenes, in contrast with the widely used halogeno- and oxy-selenenylation, ${ }^{1}$ may be explained in terms of the relatively poor nucleophilicity of the nitrogen atom. Several methods have been reported describing the synthesis of β phenylselenocarboxamides, ${ }^{2}$ sulphonamides, ${ }^{3}$ azides, ${ }^{4}$ nitrocompounds, ${ }^{5}$ and isothiocyanates. ${ }^{6}$

In this paper we describe two new aminoselenenylation reactions, namely carbamato- ${ }^{7}$ and cyanamido-selenenylation ${ }^{8}$ of alkenes (Scheme 1). The first method allows an efficient preparation of β-phenylseleno and allylcarbamates, and the latter can be transformed eventually to the corresponding allylic primary amines. The second aminoselenenylation reaction reported affords β-phenylseleno cyanamides, which can be transformed into cyanamides, allylic cyanamides, and cyanimides.

Scheme 1. $\mathrm{NuH}=\mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{R}, \mathrm{H}_{2} \mathrm{NCN}$.

Results and Discussion

Carbamatoselenenylation of Alkenes.-Initial attempts using ethyl carbamate, 5α-cholest-2-ene (1), and benzeneselenenyl chloride as the electrophilic selenium source were unsuccessful, and the formation of only β-hydroxy and β-chloro selenides was observed. Running the reaction in the presence of silica gel was also unpromising. ${ }^{9}$ An increase in electrophilic nature of the selenium reagent has been reported when benzeneselenenyl halides are combined with different silver salts. ${ }^{10}$ Increase in the N-selectivity of several ambident nucleophiles has also been observed in the presence of mercury salts. ${ }^{5.6}$ We therefore decided to try the system $\mathrm{PhSeCl}-\mathrm{AgBF}_{4}$ in order to achieve the carbamatoselenenylation of alkenes. \dagger
In a typical experiment (Scheme 2), a solution of benzeneselenenyl chloride $(1.1 \mathrm{mmol})$ in dichloromethane was added

Scheme 2. Reagents: i, $\mathrm{PhSeCl}, \mathrm{AgBF}_{4}, \mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{Et}$.
dropwise, at $25^{\circ} \mathrm{C}$, under argon, and in the dark, to a well stirred suspension of 5α-cholest-2-ene (1) (1 mmol), ethyl carbamate (40 mmol) \ddagger and silver tetrafluoroborate (1.2 mmol) in dichloromethane. After 1 hat $25^{\circ} \mathrm{C} 3 \alpha$-ethoxycarbonylamino$2 \beta$-phenylseleno-5 α-cholestane (2) was obtained in 83% yield. Results are summarized in Table 1 (Method A). $\$$

The axial disposition of the substituents at $\mathrm{C}-2$ and $\mathrm{C}-3$ in the seleno compound (2) was clearly established from its ${ }^{1} \mathrm{H}$ NMR spectrum where two narrow multiplets ($w_{\frac{1}{2}} 9$ and 14 Hz) at δ 3.60 and 4.05 , corresponding to the $\mathrm{C}-2$ and $\mathrm{C}-3$ methine protons respectively, were observed. The phenylseleno group in compound (2) was oxidatively removed [$\mathrm{H}_{2} \mathrm{O}_{2}$, tetrahydrofuran (THF) $\left.25^{\circ} \mathrm{C}\right]$ to give the carbamate (3) which in turn was synthesized from 5α-cholest-1-en-3-one following a known procedure. ${ }^{12}$

Clean reactions with high yields were observed with monosubstituted and 1,2-disubstituted alkenes, with the exception of cyclododecene (16) (entry 9) that will be discussed below. The regioisomers (6), (7) and (11), (12) could be distinguished easily by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy because chemical shifts (δ_{H} and δ_{C}) are shifted upfield when the nitrogen is replaced by selenium. Attempts to extend this reaction to $1,1-$

[^0]Table 1. Carbamatoselenenylation of alkenes.

Entry	Alkene	Group R in carbamate $\left(\mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{R}\right)$	Method ${ }^{\text {a }}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$; time (h)	Product(s), Yield (\%)
1	(1)	Et	A	25; 1	(2), 83
2	(1)	Et	A	25; 24	b
3	(1)	Et	B	40-45; 7	(2), 80
4	(5)	Et	A	25; 6	(6), 24; (7), 56
5	(5)	Et	B	40-45; 10	(6), 23; (7), 55
6	(10)	Et	A	25; 7	(11), 58; (12), 25
7	(10)	Et	B	40-45; 10	(11), 61; (12), 25
8	(10)	Et	B	25; 7	(13), 65°
9	(16)	Et	A	25; 20	$\begin{aligned} & (17), 27 ;(20), 11 \\ & (18), 40^{d} \end{aligned}$
10	(16)	Et	B	40-45; 11	$\begin{aligned} & (17), 21 ;(20), 10 \\ & (18), 54^{e} \end{aligned}$
11	(22)	Et	A	40-45; 16	$\begin{aligned} & \text { (23), } 12 ;(24), 5 ;(25), 3^{f} \\ & (27), 20 ;(28), 6 \end{aligned}$
12	(29)	Et	A	25; 5	erythro-(30), 95
13	(29)	Et	B	40-45; 8	erythro-(30), 93
14	(29)	Cyclohexyl	A	25; 6	(31), 74
15	(29)	Cyclohexyl	B	40-45; 8	(31), 83
16	(29)	$\mathrm{CH}_{2} \mathrm{Ph}$	A	25; 6	(32), 76
17	(29)	$\mathrm{CH}_{2} \mathrm{Ph}$	B	40-45; 8	(32), 73
18	(29)	Bu^{2}	A	25; 19	(33), 20; (34), 17
19	(36)	Et	A	25; 7	threo-(30), 87
20	Cholesteryl ac.	Et	A	25; 20	

${ }^{a}$ Method A: Alkene (1 mmol), $\mathrm{PhSeCl}(1.2 \mathrm{mmol}), \mathrm{AgBF}_{4}(1.3 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{R}(40 \mathrm{mmol})$. Method B: Alkene (1 mmol), NPSP (1.5 mmol), HBF_{4} $(0.5-1 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{R}(40 \mathrm{mmol}) .{ }^{b} \mathrm{AgBF}_{4}$ was omitted. ${ }^{c}$ Traces of (11) and (12) were also detected. ${ }^{d}$ Two stereoisomers in a $3: 1$ ratio. ${ }^{e}$ Two stereoisomers in a $2: 1$ ratio. ${ }^{\text {S }}$ The reaction products were separated into two unresolved mixtures comprised of $(\mathbf{2 3})+(\mathbf{2 4})+(\mathbf{2 5})$ and $(\mathbf{2 7})+(\mathbf{2 8})$.
disubstituted and trisubstituted alkenes are indicated in entries 11 and 20. Methylenecyclohexane (22) partially isomerizes under the reaction conditions used $\left(40-45^{\circ} \mathrm{C}, 16 \mathrm{~h}\right)$ to $1-$ methylcyclohexene (42), affording the seleno carbamates (23), (24), and (25) and the allylic carbamates (27) and (28). It is remarkable to note that the acid-catalysed elimination of the phenylseleno group, without the usual oxidation, observed in this case and also in the cyclododecene (16) reaction (entry 9) is almost unprecedented. ${ }^{13}$ Cholesteryl acetate failed to react under different conditions and the only product detected was the $5 \alpha, 6 \beta$-dihydroxy derivative in 29% yield.

The stereoespecificity of the carbamatoselenenylation reaction was evidenced when (E) - and (Z)-dec-5-ene were used as olefinic substrates (Scheme 3) to give the erythro-(30) and threo(30) β-phenylseleno carbamates, respectively, in 95 and 87% yield (entries 12 and 19); these stereoisomers show different ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral patterns.*

With regard to the regiochemistry of this reaction, we observed that monosubstituted alkenes gave a mixture of regioisomers. Although dodec-1-ene (10) yielded predominantly the Markovnikov adduct, the most sterically hindered vinylcyclohexane (5) gave mainly the anti-Markovnikov product (compare entries 4 and 6). This behaviour indicates that the reaction is highly dependent on steric factors. Thus, the reaction with 5α-cholest-2-ene (1) afforded only the regioisomer (2) as the carbamate approaches exclusively by the less hindered face of the molecule (α face). Furthermore, in the reaction with 1,1disubstituted and trisubstituted alkenes, where electronic factors are very important, the anti-Markovnikov adducts predominate over the Markovnikov ones (ca. 2:1) (entry 11).

With the aim of facilitating a subsequent deprotection of

[^1]the amino group, we used cyclohexyl, benzyl, and t-butyl carbamates in the reaction. As shown in Table 1 for (E)-dec5 -ene (29) (entries 14 and 16), cyclohexyl and benzyl β phenylseleno carbamates (31) and (32) were produced in good yield. However, the t-butyl β-phenylseleno carbamate (33) (entry 18) was obtained in low yield (20%), in addition to the β hydroxy selenide (34) (17%); the results were not improved when the temperature was increased.
N-(Phenylseleno)phthalimide (NPSP) was also used as the source of electrophilic selenium. The catalytic action of several acids was tested $\left[\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{HBF}_{4}\right.$, camphor-10-sulphonic acid, toluene- p-sulphonic acid (PTSA)], tetrafluoroboric acid being the most effective. The system NPSP- HBF_{4} overcomes the difficulty of working with the very hygroscopic and expensive silver tetrafluoroborate, and provides an easier workup procedure. Results are displayed in Table 1 (Method B).

The reaction proceeds stereoselectively and works well with monosubstituted and 1,2-disubstituted alkenes. Although the required reaction temperature is higher than in the preceding reaction $\left(40-45^{\circ} \mathrm{C}\right)$, we found that this carbamatoselenenylation reaction afforded the adducts in similar yields to those obtained with the system $\mathrm{PhSeCl}-\mathrm{AgBF}_{4}$, as well as similar regioisomer ratios to those found for the reaction of $\mathrm{PhSeCl}-\mathrm{AgBF}_{4}$ with monosubstituted alkenes.

The yields of β-phenylseleno carbamates decreased when the reaction temperature or the reaction time was diminished, and a concomitant increase in the yield of β-hydroxy selenides was observed (compare entries 7 and 8). Owing to the ambident nature of carbamates, compounds (38) and (39) can be formed by O - or N-attack, respectively (Scheme 4). The kinetically favoured intermediates (38) underwent hydrolysis during the work-up to give β-hydroxy selenides. Nucleophilic N-attack on the episelenonium ion (37) to produce β-phenylseleno carbamates (39) seemed to be an irreversible process under the reaction conditions. Only in the case of cyclododecene (16) (entries 9 and 10) did the isomerization (38) $\longrightarrow(39)$ turn out

(10)

(11) $\mathrm{R}^{1}=\mathrm{NHCO}_{2} \mathrm{Et}_{1}, \mathrm{R}^{2}=\mathrm{SePh}$
(12) $\mathrm{R}^{1}=\mathrm{SePh}, \mathrm{R}^{2}=\mathrm{NHCO}_{2} \mathrm{Et}$
(13) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{SePh}$
(14) $\mathrm{R}^{1}=\mathrm{NHCN}, \mathrm{R}^{2}=\mathrm{SePh}$
(15) $\mathrm{R}^{1}=\mathrm{SePh}, \mathrm{R}^{2}=\mathrm{NHCN}$

(22)
(23) $\mathrm{R}^{1}=\mathrm{SePh}, \mathrm{R}^{2}=\mathrm{NHCO}_{2} E t, \mathrm{R}^{3}=\mathrm{H}$
(24) $R^{1}=H, R^{2}=\mathrm{SePh}, \mathrm{R}^{3}=\mathrm{NHCO}_{2} \mathrm{Et}$
(25) $R^{1}=H, R^{2}=\mathrm{NHCO}_{2} E t, \mathrm{R}^{3}=\mathrm{SePh}$
(26) $\mathrm{R}^{1}=\mathrm{SePh}, \mathrm{R}^{2}=\mathrm{NHCN}, \mathrm{R}^{3}=\mathrm{H}$

(27)

(29)

(28)

(30) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Et}$
(31) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{C}_{6} \mathrm{H}_{11}$
(32) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
(33) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Bu}^{\mathrm{t}}$
(34) $\mathrm{R}=\mathrm{OH}$
(35) $\mathrm{R}=\mathrm{NHCN}$

* Although the reaction was performed with the alkene stereoisomeric mixture ($E: Z 7: 3$) the β-phenylseleno carbamate (17) is a single stereoisomer, for which we tentatively propose the erythro stereochemistry.

erythro-(30)

Scheme 3. Reagents: $\mathrm{i}, \mathrm{PhSeCl}, \mathrm{AgBF}_{4}, \mathrm{H}_{2} \mathrm{NCO}_{2} \mathrm{Et}$.

Scheme 4.

to be extremely slow regardless of the system used (Methods A and \mathbf{B}), and the reaction product was mostly the β-hydroxy selenide (18) (mixture of stereoisomers) with lesser amounts of the carbamate (17)* and the allylic carbamate (20). This particular situation is presumably associated with conformational factors that hinder the antiperiplanar disposition of the substituents in intermediate (38) ${ }^{14}$ and therefore the equilibrium (38) \rightleftharpoons (37).

Cyanamidoselenenylation of Alkenes.-Cyanamide ($\mathrm{H}_{2} \mathrm{NCN}$) can also be used efficiently as a nucleophile in seleniumpromoted additions to non-activated alkenes. Thus, in a typical reaction, NPSP (1.3 mmol) was added to a mixture of 5α -cholest-2-ene (1) (1 mmol), cyanamide (20 mmol), and PTSA (1 mmol) in dry dichloromethane, in the dark and under argon, and the resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 18 h to afford, after column chromatography, the β-phenylseleno cyanamide regioisomers (40) and (41) in 92% yield [ratio (40): (41) 3:2]. \dagger The results obtained with different alkenes are shown in Table 2.
This reaction was efficiently applied to mono-, di-, and trisubstituted alkenes. Nevertheless, the tetrasubstituted alkene tetrahydroindan (50) did not undergo the cyanamidoselenenylation reaction under different reaction conditions (entry 15). The stereochemistry of the products (47)-(49) (entries 9-11) was confirmed to be trans by the wide signal observed in the ${ }^{1} \mathrm{H}$ NMR spectra (multiplets with $w_{\frac{1}{2}} 30-50 \mathrm{~Hz}$) for the protons attached to carbons bearing the phenylseleno and cyanamido groups.

The cyclic diene cyclo-octa-1,5-diene (51) gave, after reaction with NPSP- $\mathrm{H}_{2} \mathrm{NCN}$ (Scheme 5) the regioisomeric 9 -azabi-cyclo[3.3.1]- and 9-azabicyclo[4.2.1]-nonane (52) and (53) in 83% yield (ratio $3: 2$) as the result of a combined process of interand intra-molecular nucleophilic addition of cyanamide. The
\dagger The proposed structures for both regioisomers were confirmed by the synthesis of the allylic cyanamide (4) [through oxidation to the selenoxide and pyrolysis of the regioisomer (40)], also obtained from $3 \alpha-$ amino- 5α-cholest-1-ene ${ }^{12}$ (i, $\mathrm{NaOCN}, \mathrm{AcOH}, \mathrm{EtOH}$; ii, $\mathrm{MeSO}_{2} \mathrm{Cl}$, pyridine). ${ }^{15}$

Table 2. Cyanamidoselenenylation of alkenes. ${ }^{a}$

Entry	Alkene	Temp. $\left({ }^{\circ} \mathrm{C}\right)$; time (h)	Product(s), Yield (\%)
1	(1)	25; 18	(40), 55; (41), 37
2	(1)	25; 3	(40), 25; (41), $16^{\text {b }}$
3	(5)	25; 22	(8), 25; (9), 25
4	(5)	25; 24	(8), 41 ; (9), $40^{\text {c }}$
5	(10)	25; 24	(14), 71 ; (15), $17^{\text {c }}$
6	(29)	25; 22	erythro-(35), 78
7	(29)	25; 5	erythro-(35), $62^{\text {b }}$
8	(36)	25; 22	threo-(35), 81
9	(44)	25; 18	(47), $74{ }^{\text {c }}$
10	(45)	25; 18	(48), $65^{\text {c }}$
11	(46)	25; 18	(49), $44^{\text {c }}$
12	(16)	25; 24	(19), 76^{d}
13	(22)	25; 24	(26), 71
14	(42)	25; 24	(43), 78
15	(50)	80; 16	e
16	(51)	25; 18	(52), 50; (53), 33

${ }^{a}$ Alkene (1 mmol), $\mathrm{H}_{2} \mathrm{NCN}(20 \mathrm{mmol})$, PTSA (1 mmol), NPSP (1.3 $\mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml}) .{ }^{b} \mathrm{PhSeCl}(1.2 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(1.3 \mathrm{mmol})$ were used instead of NPSP-PTSA. ${ }^{c}$ Only 0.5 mmol of PTSA per mmol of alkene was employed. ${ }^{d}$ Unresolved mixture of diastereoisomers; ratio erythro: threo 7:3. ${ }^{e}$ 1,2-Dichloroethane was used as solvent.

(40) $\mathrm{R}^{1}=\mathrm{SePh}, \mathrm{R}^{2}=\mathrm{NHCN}$
(41) $R^{1}=\mathrm{NHCN}, \mathrm{R}^{2}=\mathrm{SePh}$

(42)

(47) $n=2$
(48) $n=3$
(49) $n=4$
(4)

(43)

(50)
(44) $n=2$

Table 3. Oxidative fragmentation of β-phenylseleno carbamates. ${ }^{\text {a }}$

Entry	Carbamate	Temp. $\left({ }^{\circ} \mathrm{C}\right) ;$ time (h)	Allylic carbamate, Yield (\%)
1	$(\mathbf{2})$	$25 ; 25$	$\mathbf{(3)}, 71$
2	$(\mathbf{3 0)}$	$25 ; 19$	$(56), 79$
3	$(\mathbf{3 1)}$	$25 ; 18$	$(57), 84$
4	$(\mathbf{3 2)}$	$25 ; 14$	$(58), 81$

${ }^{a}$ Reactions were carried out in THF with 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{mmol})$ as oxidant.
isomer ratio was deduced from the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture. ${ }^{16}$

The system $\mathrm{PhSeCl}-\mathrm{AgBF}_{4}$ can also be used instead of NPSP-PTSA to promote the cyanamidoselenenylation of alkenes; however, although the reaction times were shorter (3-5 h) lower yields were observed (entries 2 and 7).

The stereospecifity of the reaction is shown in entries 6-8 for (E) - and (Z)-dec-5-ene. In the case of cyclododecene (16) a mixture of isomers ($E: Z 7: 3$) was used as the starting substrate, and a mixture of isomers (19) in the same ratio was formed (entry 12). However, steric hindrance is not so important in this reaction as in the carbamatoselenenylation reaction. Thus, the monosubstituted alkene (10) gave mainly the Markovnikov

Scheme 5. Reagents: i, NPSP, PTSA, $\mathrm{H}_{\mathbf{2}} \mathrm{NCN}$.
adduct (entry 5), vinylcyclohexane (5) a $1: 1$ mixture of regioisomers (entries 3 and 4), and the 1,2-disubstituted alkene (1) two regioisomers (40) and (41) in a 3:2 ratio (entries 1 and 2). In addition, the 1,1 -disubstituted and trisubstituted alkenes (22) and (42) (entries 13 and 14) gave exclusively the Markovnikov adducts.

All attempts to use other N-nucleophiles such as MeCONH_{2} and $\mathrm{H}_{2} \mathrm{NCONH}_{2}$ in the aminoselenenylation reaction were unsuccessful.

Reductive and Oxidative Removal of the Phenylseleno Group.-Treatment of β-phenylseleno carbamate (2) and β phenylseleno cyanamide (40) with triphenyltin hydride ${ }^{17}$ in toluene at $120^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$ gave the selenium-free compounds (54) and (55) in 88 and 94% yield, respectively, the carbamate and cyanamide functions remaining unaffected. ${ }^{18}$

It is well established that the regiochemistry in the selenoxide fragmentation of β-hetero-substituted alkyl phenyl selenides is highly dependent on the nature of the heteroatom. ${ }^{19}$ In the particular case of the nitrogen atom it has been reported that β phenylseleno amides ${ }^{20}$ and nitro selenides ${ }^{5}$ afford exclusively allyl and vinyl compounds, respectively, while β-phenylseleno dimethylamines, ${ }^{21}$ azides, ${ }^{4}$ and isothiocyanates ${ }^{6}$ lead to mixtures of regioisomers. The two types of adducts described in this paper exhibited different behaviour upon oxidative deselenation. As shown in Table 3, β-phenylseleno carbamates afforded exclusively allylic carbamates after oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ and subsequent pyrolysis at $25^{\circ} \mathrm{C}$. No regioisomers were detected.*

(54) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Et}$
(55) $\mathrm{R}=\mathrm{NHCN}$

(60)

(62)

(56) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{Et}$
(57) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{C}_{6} \mathrm{H}_{11}$
(58) $\mathrm{R}=\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
(59) $\mathrm{R}=\mathrm{NH}_{2}$

(61)

(21)

[^2]Table 4. Oxidative fragmentation of β-phenylseleno cyanamides.

Entry	Cyanamide	Oxidant ${ }^{\text {a }}$	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$; time (h)	Yield (\%)	
					Allylic cyanamide	Cyanimide
1	(35)	O_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40; 2	(63), 30	$(65), 50$
2	(35)	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	25; 4	(63), 30	$(66), 58$
3	(35)	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {b }}$	THF	0; 48	(63), 59	
4	(35)	$\mathrm{H}_{2} \mathrm{O}^{\text {b }}$ b	MeOH	0; 72	(63), 71	(66), 5
5	(35)	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	0; 48	(63), 77	
6	(40)	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	25; 2	(4), 22	(60), 31
7	(40)	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	0; 62	(4), 40	(60), 16
8	(41)	$\mathrm{H}_{2} \mathrm{O}^{\text {b }}{ }^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	25; 1	(61), 40	(62), 43
9	(41)	O_{3}	$\mathrm{Et}_{2} \mathrm{O}$	-78; 7/0; 15	(61), 73	(62), 19
10	(19)	O_{3}	$\mathrm{Et}_{2} \mathrm{O}$	0; 20	(21), 61	
11	(19)	$\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	0; 24	(21), 86	

${ }^{a}$ Ozonizations were carried out at $-78^{\circ} \mathrm{C} .{ }^{b} 2-4 \mathrm{mmol}$ of $15-30 \%$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ per mmol of cyanamide.

On the other hand, ozonization of β-phenylseleno cyanamide erythro-(35) (Table 4, entry 1) followed by selenoxide fragmentation at $40^{\circ} \mathrm{C}$ led to a mixture of allylic cyanamide (63) (30% yield) and β-phenylseleno cyanimide (65) (50% yield), the latter produced by addition of PhSeOH to the initially formed vinylic cyanamide (64) (Scheme 6).* Further oxidation of

Scheme 6. Reagents: i, O_{3} (1 mol equiv.); ii, $\mathrm{H}_{2} \mathrm{O}_{2}$ (4 mol equiv.); iii, PhSeOH .
selenide (65) (4 mol equiv. of $\mathrm{H}_{2} \mathrm{O}_{2}$) gave rise to the unsaturated cyanimide (66) in 94% yield. The regioselectivity of the reaction could be improved by an appropriate choice of the reaction conditions as shown in Table 4 for erythro-(35) (entries 1-5). When the pyrolysis was performed at low temperature the yields of allylic cyanamides were increased and under suitable reaction conditions they were the only observed products. Likewise, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}_{2}$ appeared to be the best solvent-oxidant combination for improvement of the yield of allylic cyanamides.

In summary, we describe in this paper two efficient syntheses of β-phenylseleno carbamates and cyanamides from nonactivated alkenes. Reductive or oxidative removal of the phenylseleno group in the adducts formed in the carbamatoselenenylation reaction lead, after deprotection, to synthetically useful amines and β-functionalized amines. On the other hand, the cyanamidoselenenylation reaction, together with the thermal allylic transposition of allylic cyanamides that we reported recently, ${ }^{25}$ provides a route to a variety of allylic cyanamides as well as cyanamides and cyanimides which can

[^3]be easily synthesized; this complements the already known halogenocyanamination of alkenes. ${ }^{26}$

Experimental

M.p.s were determined with a Mettler FP82 hot-stage apparatus and are uncorrected. Optical rotations were measured at room temperature for solutions in chloroform on a PerkinElmer 241 polarimeter. IR spectra were taken on a PerkinElmer 681 instrument for CHCl_{3} solutions. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AC80 or a WP200SY instrument for solutions in CDCl_{3} (unless otherwise stated) with $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference. Low- and high-resolution mass spectra were determined with a VG Micromass ZAB-2F spectrometer at 70 eV . UV spectra were taken on a PerkinElmer 550SE instrument for solutions in EtOH. TLC was performed on Merck silica gel 60, and column chromatography on Merck silica gel ($0.063-0.2 \mathrm{~mm}$). Circular layers of Merck silica gel 60 PF254 (1 mm) were used on a Harrison chromatotron for centrifugally assisted chromatography. The spray reagent for TLC was vanillin (1 g) in $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{EtOH}$ (4: 1; 200 ml).

Carbamatoselenenylation of Alkenes. General Procedure.Method A. To a solution of 5α-cholest-2-ene (1) ($500 \mathrm{mg}, 1.35$ $\mathrm{mmol})$, ethyl carbamate $(4.75 \mathrm{~g}, 53.3 \mathrm{mmol})$, and silver tetrafluoroborate ($312 \mathrm{mg}, 1.6 \mathrm{mmol}$) in dry dichloromethane $(50 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$, in the dark, was added dropwise a solution of benzeneselenenyl chloride ($285 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry dichloromethane (8 ml) under argon during 20 min . The mixture was then stirred at $25^{\circ} \mathrm{C}$ for 40 min , poured into aq. potassium hydroxide, and extracted with diethyl ether. The extract was filtered through Celite 545 , washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was then evaporated off. Column chromatography of the residue (hexane-ethyl acetate; $9: 1$) gave 3α-ethoxycarbonylamino- 2β-phenylseleno- 5α-cholestane (2) \dagger ($690 \mathrm{mg}, 83 \%$), m.p. $168-172^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}+38^{\circ}(c$ $0.19)$; $v_{\text {max }} 3400,1705,1575,1500$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.50{ }^{\circ} \mathrm{C}\right) 7.61$ and $7.24\left(5 \mathrm{H}, 2 \mathrm{~m}\right.$, each $\left.w_{\frac{1}{2}} 10 \mathrm{~Hz}\right), 4.96(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $7.4 \mathrm{~Hz}, \mathrm{NH}), 4.05\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 14 \mathrm{~Hz}\right), 4.01(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.60(1$ $\left.\mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 9 \mathrm{~Hz}\right), 1.14(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{d}, J 7$ $\mathrm{Hz}), 0.87(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, and $0.66(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(50.3 \mathrm{MHz} ; 50^{\circ} \mathrm{C}\right)$ $155.6,132.0,42.8$, and $36.5(\mathrm{C}), 133.3(\times 2), 129.0(\times 2), 127.2$, $56.6,56.5,55.5,52.0,41.0,35.8,35.3$, and $28.0(\mathrm{CH}), 60.7,40.2$, $39.6(\times 2), 36.3,31.9(\times 2), 29.6,28.2,24.2,24.0$, and $21.0\left(\mathrm{CH}_{2}\right)$, $22.7,22.5,18.8,14.6,14.3$, and 12.2 (Me); $m / z 615$ and 613 (10, $5 \%, M^{+}$), 569.3175 and 567.3304 (59, 34, $M^{+}-\mathrm{EtOH}$. $\mathrm{C}_{34} \mathrm{H}_{51}$ NOSe requires $m / z, 569.3132$ and 567.3139), 526.3115 and $524.2953\left(13,8, \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{Se}\right.$ requires $m / z, 526.3076$ and
524.3084), and $370.3610\left(100, \mathrm{C}_{27} \mathrm{H}_{46}\right.$ requires $m / z, 370.3597$). Method B. A solution of NPSP ($51 \mathrm{mg}, 0.17 \mathrm{mmol}$) in dry dichloromethane (1 ml) was added during 30 min , under argon, to a stirred solution of 5α-cholest-2-ene (1) (50 mg .0 .14 mmol), ethyl carbamate ($506 \mathrm{mg}, 5.6 \mathrm{mmol}$), and tetrafluoroboric acid $(12 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{ml})$ at $40-45^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 5.5 h , and then an additional solution of NPSP ($13 \mathrm{mg}, 0.04 \mathrm{mmol}$) in dry dichloromethane $(0.3 \mathrm{ml})$ was added. After being further stirred for 2 h the mixture was poured into aqueous NaHCO_{3} and extracted with diethyl ether. The extract was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was then evaporated off. Column chromatography of the residue (hexane-ethyl acetate; 9:1) gave 3α-ethoxycarbonylamino- 2β-phenylseleno5α-cholestane (2) ($66 \mathrm{mg}, 80 \%$).

The following β-phenylseleno carbamates were prepared in analogous fashion.

Ethyl[1-cyclohexyl-2-(phenylseleno)ethyl]carbamate (6). Prepared from vinylcyclohexane (5) and ethyl carbamate in 23 24% yield and separated from regioisomer (7) by column chromatography (hexane-ethyl acetate; 90:10), oil; $v_{\text {max }} 3420$, $1700,1570,1500$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.53$ and $7.24(5$ $\mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5$ and 10 Hz$), 4.71(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{NH}), 4.07$ $(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.70\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 25 \mathrm{~Hz}\right), 3.10(2 \mathrm{H}, \mathrm{brd}, J 5 \mathrm{~Hz})$, and $1.21(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 156.3$ and $130.4(\mathrm{C}), 133.0$ $(\times 2), 129.1(\times 2), 127.0,55.6$, and $41.4(\mathrm{CH}), 60.7,32.2,30.0$, 28.5, 26.3, and $26.0(\times 2)\left(\mathrm{CH}_{2}\right)$, and $14.6(\mathrm{Me}) ; m / z 355.1019$ ($6 \%, M^{+} . \mathrm{C}_{17} 7 \mathrm{H}_{25} \mathrm{NO}_{2}$ Se requires $M, 355.1048$), $353\left(7, M^{+}\right)$, 266.0547 ($3, \mathrm{C}_{14} \mathrm{H}_{18}$ Se requires $m / z, 266.0572$), 264 (2), 198.1476 (13, $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires $m / z, 198.1493$), $156.9538\left(81, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}\right.$ requires $m / z, 156.9556), 155(50)$, and 109 (100).

Ethyl[2-cyclohexyl-2-(phenylseleno)ethyl]carbamate (7). Prepared from vinylcyclohexane (5) and ethyl carbamate in 55$56 \%$ yield, oil, $v_{\max } 3400,1700,1570,1500$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.54$ and $7.26\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 10 Hz$)$, $5.08\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}, \mathrm{NH}\right), 4.06(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{m}$, $\left.w_{\frac{1}{2}} 30 \mathrm{~Hz}\right), 3.31^{2}(1 \mathrm{H}$, ddd, $J 13.4,8.0$, and 5.4 Hz$), 3.17(1 \mathrm{H}, \mathrm{m}$, $\left.w_{2} 19 \mathrm{~Hz}\right)$, and $1.20(3 \mathrm{H}, \mathrm{t}, J \mathrm{~Hz}) ; \delta_{\mathrm{c}}(20.1 \mathrm{MHz}) 156.4$ and 129.7 (C), $134.3(\times 2), 129.0(\times 2), 127.3,54.9$, and $40.6(\mathrm{CH}), 60.7$, $43.5,31.3,30.7$, and $26.3(\times 3)\left(\mathrm{CH}_{2}\right)$, and $14.5(\mathrm{Me}) ; m / z 355$ $\left(4 \%, M^{+}\right), 353.0972\left(2, M^{+} . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Se}\right.$ requires M, 353.1057), $266.0522\left(3, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Se}\right.$ requires $m / z, 266.0572$), 264 (2), 198.1461 ($26, \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires $m / z, 198.1493$), 156.9528 ($51, \mathrm{C}_{6} \mathrm{H}_{5}$ Se requires $m / z, 156.9556$), 155 (40), and 109 (100).

Ethyl [(1-phenylselenomethyl)undecyl] carbamate (11). Prepared from dodec-1-ene (10) and ethyl carbamate in $58-61 \%$ yield and separated from regioisomer (12) by chromatography on a chromatotron (hexane-ethyl acetate; 97:3), oil; $v_{\text {max }} 3420$, $1700,1570,1500$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.52$ and 7.24 (5 $\mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5$ and 10 Hz$), 4.71(1 \mathrm{H}$, br d, $J 7.6 \mathrm{~Hz}, \mathrm{NH}), 4.06$ $(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.85\left(1 \mathrm{H}, \mathrm{m}, w_{2} 24 \mathrm{~Hz}\right), 3.10(2 \mathrm{H}, \mathrm{brd}, J 5 \mathrm{~Hz})$, $1.21(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$, and $0.88(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz})$ 156.0 and $130.3(\mathrm{C}), 132.8(\times 2), 130.1(\times 2), 127.0$ and 51.1 $(\mathrm{CH}), 60.7,34.6,34.2,31.9,29.5(\times 2), 29.4,29.30,29.32,29.27$, 25.9, and $22.4\left(\mathrm{CH}_{2}\right), 14.6$ and $14.0(\mathrm{Me}) ; m / z 413.1836$ and 411.1891 (1 and $1 \%, M^{+} . \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2}$ Se requires $M, 413.1831$ and 411.1838), $367.1360\left(66, \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NOSe}\right.$ requires m / z, 367.1412), 365 (33), $256.2217\left(4, \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{2}\right.$ requires m / z, 256.2275), and 158 (100).

Ethyl [2-(phenylseleno)dodecyl]carbamate (12). Prepared from dodec-1-ene (10) and ethyl carbamate in 25% yield, oil; $v_{\text {max }} 3430,1710,1570,1500$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.53$ and $7.26\left(5 \mathrm{H}, 2 \times \mathrm{m}\right.$, each $\left.w_{\frac{1}{2}} 12.5 \mathrm{~Hz}\right), 5.10\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 18 \mathrm{~Hz}\right.$, $\mathrm{NH}), 4.09(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.40\left(1 \mathrm{H}, \mathrm{m}, w_{1} c a .30 \mathrm{~Hz}\right), 3.26(1 \mathrm{H}$, $\mathrm{q}, J 7 \mathrm{~Hz}), 3.25\left(1 \mathrm{H}, \mathrm{m}, w_{1} c a .8 \mathrm{~Hz}\right), 1.22(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$, and $0.88(3 \mathrm{H}, \mathfrak{t}, J 6.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(5^{2} 0.3 \mathrm{MHz}\right) 156.5$ and $132.8(\mathrm{C}), 135.2$ $(\times 2), 129.1(\times 2), 127.6$, and $46.7(\mathrm{CH}), 60.8,45.0,32.8,31.9$, $29.6(\times 2), 29.4,29.3,27.7$, and $22.7\left(\mathrm{CH}_{2}\right), 14.6$ and $14.1(\mathrm{Me})$;
$m / z 413.1811$ and 411.1825 (4 and $2 \%, M^{+}$), 367.1323 (35 , $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NOSe}$ requires $m / z, 367.1412$), 365 (19), 324.1335 (2, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Se}$ requires $m / z, 324.1354$), 256.2232 ($37, \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{2}$ requires $m / z, 256.2275$), and 158 (100).
erythro-Ethyl [1-butyl-2-(phenylseleno)hexyl]carbamate (30). Prepared from (E)-dec-5-ene (29) and ethyl carbamate in 93$95 \%$ yield, oil; $v_{\text {max }} 3420,1700,1570,1500$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.53$ and $7.23\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 10 Hz$)$, $4.90(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{NH}), 4.02(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.81\left(1 \mathrm{H}, \mathrm{m}, u_{\frac{1}{2}}\right.$ 26 Hz), $3.32\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}\right), 1.18(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 0.88(3 \mathrm{H}, \mathrm{t}$, $J 6 \mathrm{~Hz})$, and $0.87(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 156.2$ and 130.6 (C), $134.1(\times 2), 129.0(\times 2), 127.2,55.2$, and $54.6(\mathrm{CH}), 60.6$, $54.6,33.8,31.0,30.4,28.3,22.4$, and $22.3\left(\mathrm{CH}_{2}\right), 14.5,13.9$, and $13.8(\mathrm{Me}) ; \mathrm{m} / \mathrm{z} 385.1525$ and 383.1572 (4 and $2 \%, M^{+}$. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Se}$ requires $M, 385.1517$ and 383.1526), 228.1951 ($19, \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{2}$ requires $m / z, 228.1962$), and 158 (100).
erythro-Cyclohexyl [1-butyl-2-(phenylseleno)hexyl]carbamate (31). Prepared from (E)-dec-5-ene (29) and cyclohexyl carbamate in $74-83 \%$ yield, oil; $v_{\text {max }} 3420,1700,1570,1500$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.54$ and $7.24\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 10 Hz$), 4.91(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{NH}), 4.58\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 30 \mathrm{~Hz}\right)$, $3.82\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 26 \mathrm{~Hz}\right), 3.30\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J 6$ Hz), and $0.87(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 155.7$ and $130.6(\mathrm{C})$, $134.0(\times 2), 128.9(\times 2), 127.1,72.7,55.4$, and $54.4(\mathrm{CH}), 33.9$, $31.9(\times 2), 30.9,30.3,28.2,25.4,23.6(\times 2), 22.4$, and 22.2 $\left(\mathrm{CH}_{2}\right), 13.8$ and $13.7(\mathrm{Me}) ; m / z 439,437\left(9\right.$ and $\left.4 \%, M^{+}\right), 339$ (48), 337 (24), 296 (8), 294 (4), 282 (5), 182 (76), 157 (100), and 155 (65).
erythro-Benzyl [1-butyl-2-(phenylseleno)hexyl]carbamate (32). Prepared from (E)-dec-5-ene (29) and benzyl carbamate in $73-76 \%$ yield, oil; $v_{\max } 3420,1705,1575,1500$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.51,7.32$, and 7.20 (total $10 \mathrm{H}, 3 \times \mathrm{m}, w_{\frac{1}{2}} 12.5,25$, and 17.5 Hz), $5.05(1 \mathrm{H}$, br d, overlapped with AB system, NH$)$, 5.03 and $4.99\left(2 \mathrm{H}\right.$, AB. J 12 Hz), $3.84\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 25 \mathrm{~Hz}\right.$), 3.32 (1 $\left.\mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 19 \mathrm{~Hz}\right), 0.88(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz})$, and $0.86(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$; $\delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 155.9,136.7$, and $130.4(\mathrm{C}), 134.0,129.0,128.4$, $127.9,127.2,55.2$, and $54.7(\mathrm{CH}), 66.5,33.8,30.8,30.3,28.2,22.4$, and $22.3\left(\mathrm{CH}_{2}\right)$, 13.9 and $13.8(\mathrm{Me}) ; m / z 447.1657$ and 445.1686 (5 and $3 \%, M^{+} . \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Se}$ requires $M, 447.1673$ and 445.1681), 339.1155 and 337.1081 (37 and $20, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NOSe}$ requires $m / z, 339.1099$ and 337.1108), 296 (4), 294.1088 (2, $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{Se}$ requires $m / z, 294.1050$), 290.2085 (12, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}$ requires $m / z, 290.2119$), 157 (100), and 155 (60).
erythro-t-Butyl [1-butyl-2-(phenylseleno)hexyl]carbamate (33). Prepared from (E)-dec-5-ene (29) and t-butyl carbamate (Method A) in 20% yield as crystals, m.p. $46-47^{\circ} \mathrm{C}$ (neat); $v_{\text {max }}$ $3420,1700,1575,1495$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.55$ and $7.24\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 10 Hz$), 4.80(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9 \mathrm{~Hz}$, NH), $3.75\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 26 \mathrm{~Hz}\right), 3.30\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 19 \mathrm{~Hz}\right), 1.39(9 \mathrm{H}$, s), $0.90(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz})$, and $0.86(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(50.3 \mathrm{MHz})$ $155.5,130.9$, and $79.1(\mathrm{C}), 134.1(\times 2), 129.0(\times 2), 127.2,55.9$, and $54.3(\mathrm{CH}), 34.2,31.0,30.4(\times 2), 22.5$, and $22.4\left(\mathrm{CH}_{2}\right), 28.4$ $(\times 3), 13.9$, and $13.8(\mathrm{Me}) ; m / z 413.1784$ and 411.1723 (22 and $11 \%, M^{+} . \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2}$ Se requires $M, 413.1830$ and 411.1838), 339.1114 ($74, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NOSe}$ requires $m / z, 339.1099$), 337 (38), $296.1008\left(10, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{Se}\right.$ requires $m / z, 296.1041$), 294 (5), and 200 (100).
threo-Ethyl [1-butyl-2-(phenylseleno)hexyl]carbamate threo(30). Prepared from (Z)-dec-5-ene (36) and ethyl carbamate in 87% yield, oil; $v_{\text {max }} 3420,1705,1580,1500$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.58$ and $7.25\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 15 Hz$)$, $4.82(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.4 \mathrm{~Hz}, \mathrm{NH}), 4.10\left(2 \mathrm{H}, \mathrm{q}, J^{2} 7.1 \mathrm{~Hz}\right), 3.84(1 \mathrm{H}$, $\left.\mathrm{m}, w_{\frac{1}{2}} 30 \mathrm{~Hz}\right), 3.25\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}\right), 1.24(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}), 0.88$ $\left(3 \mathrm{H}^{2}, \mathrm{t}, J 7 \mathrm{~Hz}\right)$, and $0.79(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}) ; \delta_{\mathrm{c}}(50.3 \mathrm{MHz}) 156.6$ and $130.5(\mathrm{C}), 134.5(\times 2), 129.2(\times 2), 127.5,55.1$, and 53.4 $(\mathrm{CH}), 60.9,34.3,33.3,30.6,28.6$, and $22.6(\times 2)\left(\mathrm{CH}_{2}\right), 14.8$, 14.13, and $14.06(\mathrm{Me}) ; m / z 385.1542$ and 383.1548 (3 and 2%, $M^{+} . \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Se}$ requires $M, 385.1520$ and 383.1528),
297.1191 and 295.1149 (3 and $2, \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{Se}$ requires m / z, 297.1121 and 295.1130), $228.1943\left(28, \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{2}\right.$ requires $m / z, 228.1963$), and $158.1197\left(100, \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{2}\right.$ requires m / z, 158.1180).

Carbamatoselenenylation of Cyclododecene (16).-Cyclododecene (16) is a 7:3 mixture of E - and Z-stereoisomer (gas chromatography, 30% carbowax 1500 on chromosorb W; $130^{\circ} \mathrm{C}$). The procedure described for compound (1) (Method A) was followed using cyclododecene (16) ($197 \mathrm{mg}, 1.18 \mathrm{mmol}$), ethyl carbamate ($4.2 \mathrm{~g}, 47.5 \mathrm{mmol}$), and silver tetrafluoroborate ($300 \mathrm{mg}, 1.54 \mathrm{mmol}$) in dry dichloromethane (30 ml), and benzeneselenenyl chloride ($272 \mathrm{mg}, 1.42 \mathrm{mmol}$) in dry dichloromethane (5 ml) (reaction time 20 h). Column chromatography of the residue (hexane-ethyl acetate; 97:3) gave erythro-ethyl [2(phenylseleno) cyclododecyl] carbamate (17) ($133 \mathrm{mg}, 27 \%$), the stereoisomers of 2-(phenylseleno) cyclododecan-1-ol (18) (41 mg , 10%; and $122 \mathrm{mg}, 30 \%$), and ethyl [(E)-cyclododec-2enyl]carbamate (20) ($33 \mathrm{mg}, 11 \%$).

Compound (17) is a single stereoisomer and the erythro stereochemistry was tentatively assigned, m.p. $80-81^{\circ} \mathrm{C}$ (from pentane); $v_{\max } 3420,1710,1570,1500$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 7.57$ and $7.27\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 10 Hz$), 4.95(1$ $\mathrm{H}, \mathrm{br} \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{NH}), 4.11(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz})$, ca. $4.1(1 \mathrm{H}, \mathrm{m}$, partially overlapped with signal at $\delta 4.11), 3.50\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20\right.$ Hz), and $1.25(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 156.4$ and $129.7(\mathrm{C})$, $134.8(\times 2), 129.1(\times 2), 127.6,49.8$, and $48.4(\mathrm{CH}), 60.8,32.7$, $32.5,25.4,25.3,23.3,23.0,22.9,21.8$, and $14.6\left(\mathrm{CH}_{2}\right)$, and $14.4(\mathrm{Me}) ; m / z 411.1637$ and 409.1639 (89 and $49 \%, M^{+}$. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2}$ Se requires $M, 411.1637$ and 409.1681), 365.1221 (8, $\mathrm{C}_{19} \mathrm{H}_{27}$ NOSe requires $m / z, 365.1255$), 363 (4), 322.1187 (19 , $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Se}$ requires $\mathrm{m} / \mathrm{z}, 322.1199$), 320 (11), 254.2084 (100 , $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}$ requires $m / z, 254.2119$).

Compound (18) (minor), amorphous; $v_{\max } 3460,1570$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.58$ and $7.27\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and $10 \mathrm{~Hz}), 3.69\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}\right), 3.35\left(1 \mathrm{H}, \mathrm{m}, w_{2} 25 \mathrm{~Hz}\right)$, and 2.27 $\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 7.5 \mathrm{~Hz}, \mathrm{OH}\right) ; \delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 135.1(\times 2), 129.0(\times 2)$, 127.7, 70.1, and $53.2(\mathrm{CH}), 30.4,29.3,24.6,24.2,23.7,23.4,23.34$, 23.30, 23.2, and $20.0\left(\mathrm{CH}_{2}\right) ; m / z 340.1328$ and 338.1335 (53 and $26 \%, M^{+} . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OSe}$ requires $M, 340.1304$ and 338.1311), $183.1742\left(63, \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}\right.$ requires $m / z, 183.1747$), and 158 (100).

Compound (18) (major), m.p. $75-76^{\circ} \mathrm{C}$ (from pentane); $v_{\text {max }}$ 3500,1575 , and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.54$ and $7.28(5 \mathrm{H}$, $2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5$ and 10 Hz), $3.74\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 21 \mathrm{~Hz}\right), 3.44(1 \mathrm{H}$, ddd, $J 1.9,7.8$, and 4.5 Hz), and $2.37\left(1 \mathrm{H}^{2}, \mathrm{~d}, J 4.7 \mathrm{~Hz}, \mathrm{OH}\right)$; $\delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 129.6(\mathrm{C}), 134.3(\times 2), 129.1(\times 2), 127.5,71.7$, and $51.7(\mathrm{CH}), 29.8,26.0,25.2,25.0,24.5,24.1,23.7,22.4,22.0$, and $21.6\left(\mathrm{CH}_{2}\right) ; m / z 340.1303$ and 338.1291 (37 and $19 \%, M^{+}$), $183.1747\left(61, \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}\right.$ requires $\left.m / z, 183.1747\right)$, and 158 (100).

Compound (20), m.p. $77-78^{\circ} \mathrm{C}$ (from pentane); $v_{\max } 3425$, 1705 , and $1500 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.61(1 \mathrm{H}$, ddd, $J 16.0,9.4$, and 5.6 Hz$), 5.24(1 \mathrm{H}, \mathrm{dd}, J 16.0$ and 8.4 Hz$), 4.65\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20\right.$ $\mathrm{Hz}, \mathrm{NH}), 4.10(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), c a .4 .0\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} c a .25 \mathrm{~Hz}^{2} \mathrm{~Hz}\right.$ partially overlapped with a signal at $\delta 4.10)$, and $1.23(3 \mathrm{H}, \mathrm{t}, J 7$ $\mathrm{Hz}) ; \delta_{\mathrm{c}}(20.1 \mathrm{MHz}) 154.6(\mathrm{C}), 133.0,131.0$, and $54.0(\mathrm{CH}), 60.6$, $33.5,31.7,26.0,25.7,25.0,24.5$, and $22.8\left(\mathrm{CH}_{2}\right)$, and $14.6(\mathrm{Me})$; $m / z 253\left(47 \%, M^{+}\right), 224(32), 180(50)$, and 164 (100).

Carbamatoselenenylation of Methylenecyclohexane (22).The procedure employed for compound (1) (Method A) was followed using methylenecyclohexane (22) ($66 \mathrm{mg}, 0.69 \mathrm{mmol}$), ethyl carbamate ($2.4 \mathrm{~g}, 27 \mathrm{mmol}$), and silver tetrafluoroborate $(175 \mathrm{mg}, 0.9 \mathrm{mmol})$ in dry dichloromethane (15 ml), and benzeneselenenyl chloride ($159 \mathrm{mg}, 0.83 \mathrm{mmol}$) in dry dichloromethane $(4 \mathrm{ml})$ (reaction temperature $40-45^{\circ} \mathrm{C}$; reaction time 16 h). Column chromatography of the crude mixture (hexane; then hexane-ethyl acetate; 95:5) gave a mixture of ethyl [1-(phenylselenomethyl)cyclohexyl]carbamate (23),
trans-ethyl [2-methyl-2-(phenylseleno)cyclohexyl]carbamate (24), and trans-ethyl [1-methyl-2-(phenylseleno)cyclohexyl]carbamate (25) in 12,5 , and 3% yield, respectively (determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy), and a mixture of ethyl [(cyclohex-1enyl)methyl]carbamate (27) and ethyl (2-methylenecyclohexyl)carbamate (28) in 20 and 6% yield, respectively (${ }^{1} \mathrm{H}$ NMR spectroscopy). Compounds (23), (24), and (25) each showed $v_{\text {max }} 3430,1710,1565,1500$, and $690 \mathrm{~cm}^{-1} ; m / z ~ 341,339$ (8 and $4 \%, M^{+}$), 295 and 293 (19 and 25), 252 and $250(14$ and 7), 184 (21), and $170(100) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.53$ and $7.23\left(15 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}}\right.$ 25 and 20 Hz). Compound (23); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.55\left(1 \mathrm{H}, \mathrm{m}, w_{z}\right.$ $7.5 \mathrm{~Hz}, \mathrm{NH}), 3.90(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.41(2 \mathrm{H}, \mathrm{s})$, and $1.16(3 \mathrm{H}, \mathrm{t}, J$ 7 Hz). Compound (24); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.5\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 18 \mathrm{~Hz}\right.$, $\mathrm{NH}), 4.06(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.98\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 8 \mathrm{~Hz}\right), 1.32(3 \mathrm{H}, \mathrm{s})$, and $1.19(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$. Compound (25); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.00(1$ $\left.\mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 6 \mathrm{~Hz}, \mathrm{NH}\right), 3.96(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}), 3.41\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 11.3\right.$ $\mathrm{Hz}), 1.36(3 \mathrm{H}, \mathrm{s})$, and $1.23(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz})$.

Compounds (27) and (28) each showed $v_{\text {max }} 3440,1700$, and $1505 \mathrm{~cm}^{-1} ; m / z 183\left(42 \%, M^{+}\right), 154$ (100), and 94 (52). Compound (27); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.57\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 10.4 \mathrm{~Hz}\right), 4.66(1$ $\left.\mathrm{H}, \mathrm{m}, w_{1} 22 \mathrm{~Hz}, \mathrm{NH}\right), 4.12(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 3.66(2 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz})$, and $1.24(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$. Compound (28): $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.73$ (2 $\left.\mathrm{H}, \mathrm{m}, w_{\frac{1}{5}} 5 \mathrm{~Hz}\right), 4.14-4.07(2 \mathrm{H}$, signals overlapped with q at δ $4.12), 4.12(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz})$, and $1.25(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$.

1-(Phenylseleno)dodecan-2-ol (13).--The procedure used for compound (1) (Method B) was followed using dodec-1-ene (10) ($53 \mathrm{mg}, 0.31 \mathrm{mmol}$), ethyl carbamate ($1.12 \mathrm{~g}, 12.6 \mathrm{mmol}$), and tetrafluoroboric acid ($27 \mathrm{mg}, 0.31 \mathrm{mmol}$) in dry dichloromethane $(10 \mathrm{ml})$, and NPSP ($114 \mathrm{mg}, 0.38 \mathrm{mmol}$) in dry dichloromethane $(3 \mathrm{ml})$ (reaction temperature $25^{\circ} \mathrm{C}$; reaction time 7 h). No additional ammount of NPSP was added. Chromatography of the crude extract (hexane) on a chromatotron gave compound (13) ($70 \mathrm{mg}, 65 \%$), oil; $v_{\text {max }} 3500,1570$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 7.54$ and $7.29\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 20 Hz$), 3.67(1 \mathrm{H}$, $\left.\mathrm{m}, w_{\frac{1}{2}} 29 \mathrm{~Hz}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J 12.7$ and 3.3 Hz$), 2.87(1 \mathrm{H}, \mathrm{dd}, J$ 12.7 and 8.7 Hz), $2.37(1 \mathrm{H}, \mathrm{brd}, J 3.7 \mathrm{~Hz}, \mathrm{OH})$, and $1.86(3 \mathrm{H}, \mathrm{t}$, $J 7 \mathrm{~Hz}$) $\mathrm{m} / \mathrm{z} 342.1453$ and 340.1441 (27 and $14 \%, M^{+}$. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSe}$ requires $M, 342.1460$ and 340.1467), 185.1807 (4, $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}$ requires $m / z, 185.1804$), 183 (11), 181 (6), 172 (100), and 170 (50).

Cyanamidoselenenylation of Alkenes. Method A. General Procedure.-To a solution of 5 -cholest-2-ene (1) $(52 \mathrm{mg}, 0.14$ mmol), cyanamide ($118 \mathrm{mg}, 2.8 \mathrm{mmol}$), and PTSA ($27 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ in dry dichloromethane (5 ml) at $25^{\circ} \mathrm{C}$, in the dark, and under argon, was added a solution of NPSP ($55 \mathrm{mg}, 0.18 \mathrm{mmol}$) in dry dichloromethane (1.5 ml) during 1 h . The mixture was stirred at $25^{\circ} \mathrm{C}$ for 17 h and then was poured into water and extracted with ethyl acetate; the extract was washed with water, and concentrated under reduced pressure. Chromatography of the extract on a chromatotron (benzene-ethyl acetate; 99:1) gave 3α-cyanoamino-2 β-phenylseleno-5 α-cholestane (40) (44 mg , 55%) and 2β-cyanoamino- 3α-phenylseleno- 5α-cholestane (41) ($29 \mathrm{mg}, 37 \%$). Compound ($\mathbf{4 0}$), m.p. $170-173^{\circ} \mathrm{C}$ (from acetonepentane); $[\alpha]_{\mathrm{D}}+31^{\circ}(c 0.20)$; $v_{\text {max }} 3380,2210,1570$, and 690 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 200 \mathrm{MHz}\right) 7.51$ and $7.06\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 10\right.$ and $30 \mathrm{~Hz}), 3.52\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 11.6 \mathrm{~Hz}\right), 3.35\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{4}} 9.5 \mathrm{~Hz}\right), 2.46(1$ $\mathrm{H}, \operatorname{br} \mathrm{d}, J 3.5 \mathrm{~Hz}, \mathrm{NH}), 1.04(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}), 0.94(6 \mathrm{H}, \mathrm{d}, J 6.5$ $\mathrm{Hz}), 0.91(3 \mathrm{H}, \mathrm{s})$, and $0.64(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{c}}(20.1 \mathrm{MHz}) 131.0,114.9$, 42.6, and $36.5(\mathrm{C}), 133.9(\times 2), 129.3(\times 2), 127.6,56.3(\times 3), 54.9$, $42.6,39.5,35.7,35.1$, and $27.9(\mathrm{CH}), 39.9,39.5,39.4,36.2,31.7$ $(\times 2), 28.8,28.1,24.1,23.8$, and $20.8\left(\mathrm{CH}_{2}\right), 22.7,22.5,18.6,14.1$, and $12.1(\mathrm{Me}) ; ~ m / z 568.3264$ and 566.3394 (41 and $30 \%, M^{+}$. $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 568.3292$ and 566.3301), 411.3695, ($100, \mathrm{C}_{28} \mathrm{H}_{47} \mathrm{~N}_{2}$ requires $m / z, 411.3738$), and 369.3511 (47, $\mathrm{C}_{27} \mathrm{H}_{45}$ requires $m / z, 369.3520$).

Compound (41), amorphous; $[\alpha]_{\mathrm{D}}+15^{\circ}(c 0.24) ; v_{\text {max }} 3390$,

2210,1570 , and $690 \mathrm{~cm}^{-1} ; \delta_{H}\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 200 \mathrm{MHz}\right) 7.52$ and $7.06(5$ $\mathrm{H}, 2 \times \mathrm{m}, w_{ \pm} 12.5$ and 25 Hz$), 3.55\left(1 \mathrm{H}, \mathrm{m}, w_{\neq} 12 \mathrm{~Hz}\right), 3.50(1 \mathrm{H}$, $\mathrm{m}, w_{\frac{1}{2}} 9 \mathrm{~Hz}$), $2.88(1 \mathrm{H}$, br d, $J 2.5 \mathrm{~Hz}, \mathrm{NH}), 1.04(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz})$, $0.94(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.79(3 \mathrm{H}, \mathrm{s})$, and $0.65(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(20.1$ $\mathrm{MHz}) 128.5,114.9,42.6$, and $37.8(\mathrm{C}), 133.6(\times 2), 129.3(\times 2)$, $127.7,56.3,56.2(\times 2), 55.0,44.5,42.2,35.7,34.8$, and $27.9(\mathrm{CH})$, $39.9,39.5,37.7,36.1,31.5,29.5,28.1,27.9,24.0,23.8$, and 20.9 $\left(\mathrm{CH}_{2}\right), 22.7,22.5,18.6,14.7$, and $12.1(\mathrm{Me}) ; m / z 568.3267$ and 566.3314 (36 and $19 \%, M^{+}$), $411.3716\left(100, \mathrm{C}_{28} \mathrm{H}_{47} \mathrm{~N}_{2}\right.$ requires m / z, 411.3739), and $369.3517\left(55, \mathrm{C}_{27} \mathrm{H}_{45}\right.$ requires m / z, 369.3521).

The following β-phenylseleno cyanamides were prepared in an analogous manner.
[1-Cyclohexyl-2-(phenylseleno)ethyl]cyanamide (8). Prepared from vinylcyclohexane (5) in 41% yield [PTSA (0.5 mol equiv.); reaction time 24 h] and separated from regioisomer (9) by column chromatography (hexane; then hexane-ethyl acetate; 90:10), oil; $v_{\text {max }} 3380,2210,1570$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ 7.53 and $7.29\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{3}} 12.5\right.$ and 10 Hz$), 4.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $3.7 \mathrm{~Hz}, \mathrm{NH}$), and $3.19-2.92(3 \mathrm{H}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 128.9$ and 115.2 (C), $133.3(\times 2), 129.3(\times 2), 127.6,61.2$, and $41.5(\mathrm{CH}), 30.9$, $29.2,28.5,26.0$, and $25.8(\times 2),\left(\mathrm{CH}_{2}\right) ; m / z 308.0779$ and 306.0802 (42 and $21 \%, M^{+} . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 308.0792$ and 306.0799), 171.9821 and 169.9851 (100 and $49, \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Se}$ requires $m / z, 171.9791$ and 169.9799), 156.9558 and 154.9573 (45 and $27, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}$ requires $m / z, 156.9556$ and 154.9564), and $151.1228\left(20, \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2}\right.$ requires $\left.m / z, 151.1235\right)$.
[2-Cyclohexyl-2-(phenylseleno)ethyl]cyanamide (9) Prepared from vinylcyclohexane (5) in 40% yield, oil; $v_{\text {max }} 3380,2220$, 1570 , and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.55$ and $7.30\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}}\right.$ 12.5 and 15 Hz$), 4.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, w_{\frac{1}{2}} 17 \mathrm{~Hz}, \mathrm{NH}\right), 3.27\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}}\right.$ 48 Hz), and $3.16\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 23 \mathrm{~Hz}\right)$; $\delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 133.3$ and $115.9(\mathrm{C}), 134.5(\times 2), 129.3(\times 2), 127.5,54.2$, and $39.8(\mathrm{CH})$, 48.3, 31.3, 30.6, and $26.1(\times 3)\left(\mathrm{CH}_{2}\right) ; m / z 308.0775$ and 306.0819 (58 and $29 \%, M^{+}$), $253.0455\left(9, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Se}\right.$ requires m / z, 253.0459), 251 (5), $151.1283\left(100, \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2}\right.$ requires m / z, 151.1235), and 109 (94).
[1-(Phenylselenomethyl)undecyl]cyanamide (14). Prepared from dodec-1-ene (10) in 71% yield [PTSA (0.5 mol equiv.); reaction time 24 h$]$ and separated from regioisomer (15) by column chromatography (hexane-ethyl acetate; $85: 15$), oil; $v_{\text {max }}$ $3360,2220,1575$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.35$ and 7.28 (5 $\mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 15$ and 20 Hz), $4.09(1 \mathrm{H}$, br d, $J 4.5 \mathrm{~Hz}, \mathrm{NH}), 3.2(1$ $\left.\mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 25^{2} \mathrm{~Hz}\right), 3.10-2.04(2 \mathrm{H})$, and $0.88(3 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz})$; $\delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 114.6(\mathrm{C}), 133.2(\times 2), 129.2(\times 2), 127.5$, and 56.0 (CH), 33.8, 33.3, 31.7, 30.0, 29.4, 29.2, 29.14, 29.10, 25.6, and 22.5 $\left(\mathrm{CH}_{2}\right)$, and $13.9(\mathrm{Me}) ; m / z 366.1534$ and 364.1542 (58 and 29%, $M^{+} . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2}$ Se requires $M, 366.1573$ and 364.1582), 325.1379 ($1, \mathrm{C}_{18} \mathrm{H}_{29}$ Se requires $m / z, 325.1434$), $209.2012\left(13, \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2}\right.$ requires $m / z, 209.2018), 195.1896\left(9, \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2}\right.$ requires m / z, 195.1861), and 171.9832 and $169.9829\left(100\right.$ and $48, \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Se}$ requires $m / z, 171.9791$ and 169.9799).
[2-(Phenylseleno)dodecyl]cyanamide (15). Prepared from dodec-1-ene (10) in 17% yield, oil; $v_{\text {max }} 3380,2220,1575$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.54$ and $7.31\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 10.2\right.$ and $20.5 \mathrm{~Hz}), 4.02\left(1 \mathrm{H}, \mathrm{brt}, w_{\frac{1}{2}} 15.5 \mathrm{~Hz}, \mathrm{NH}\right), 3.18\left(3 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 37\right.$ $\mathrm{Hz})$, and $0.88\left(3 \mathrm{H}, \mathrm{t}, J 6.5^{2} \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 133.3$ and 115.8 (C), $135.5(\times 2), 129.3(\times 2), 128.4$, and $46.2(\mathrm{CH}), 50.2,46.2$, $32.4,31.9,29.5(\times 2), 29.4,29.2,27.6$, and $22.6\left(\mathrm{CH}_{2}\right)$, and 14.0 (Me); $m / z 366.1556$ and 364.1548 (78 and $41 \%, M^{+}$), 325.1437 ($8, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{Se}$ requires $m / z, 325.1434$), 323 (5), 311.1239 (30), $\mathrm{C}_{17} \mathrm{H}_{27}$ Se requires $m / z, 311.1278$), 309 (15), and 209.2012 (100 , $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2}$ requires $m / z, 209.2018$).
erythro-[1-Butyl-2-(phenylseleno)hexyl]cyanamide (35). Prepared from (E)-dec-5-ene (29) in 78% yield (reaction time 22 h), oil; $v_{\text {max }} 3340,2210,1570$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.55$ and $7.30\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{1} 12\right.$ and 17 Hz$), 4.06(1 \mathrm{H}, \mathrm{brd}, J 6 \mathrm{~Hz}, \mathrm{NH})$, 3.31 (1 H , ddd, $J 8.9,4.9$, and 3.5 Hz), 3.19 (1 H , dddd, $J 8.9,4.9$,
3.5 , and 6.0 Hz), $0.90(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}$), and $0.89(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz})$; $\delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 128.9$ and $115.4(\mathrm{C}), 134.5(\times 2), 129.2(\times 2)$, $127.8,59.8$, and $53.2(\mathrm{CH}), 31.0,30.2,28.2(\times 2), 22.2$, and 22.1 $\left(\mathrm{CH}_{2}\right)$, and $13.7(\times 2)(\mathrm{Me}) ; m / z 338$ and $336(62$ and 31%, M^{+}), 227 and 225 (100 and 54), 181 (98), and 157 and 155 (87 and 55).
threo-[1-Butyl-2-(phenylseleno)hexyl] cyanamide, threo-(35). Prepared from (Z)-dec-5-ene (36) in 81% yield (reaction time 22 h), oil; $v_{\text {max }} 3380,2225,1580$, and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.50$ and $7.28\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{5}} 10\right.$ and 15 Hz$), 4.02(1 \mathrm{H}, \mathrm{br}$ d, $J 6.5 \mathrm{~Hz}$, NH), $3.22\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 27 \mathrm{~Hz}\right), 0.92(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$, and $0.83(3 \mathrm{H}$, $\mathrm{t}, J 7 \mathrm{~Hz}$); $\delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 128.9$ and $115.5(\mathrm{C}), 134.5(\times 2), 129.0$ $(\times 2), 127.7,60.7$, and $52.2(\mathrm{CH}), 32.1,31.8,30.1,28.0,22.14$, and $22.07\left(\mathrm{CH}_{2}\right), 13.7$ and $13.6(\mathrm{Me}) ; m / z 338.1281$ and 336.1294 (52 and $26 \%, M^{+} . \mathrm{C}_{17}{ }_{7} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 338.1261$ and 336.1269), 297.1064 (7, $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{Se}$ requires m / z, 297.1121), 227.0358 and 225.0355 (92 and $48, \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Se}$ requires m / z, 227.0339 and 255.0347), $181.1721\left(78, \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2}\right.$ requires m / z, 181.1785), and 156.9573 and 154.9529 (100 and $56, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}$ requires $m / z, 156.9557$ and 154.9556).
trans-[2-(Phenylseleno)cyclohexyl] cyanamide (47). ${ }^{27}$ Prepared from cyclohexene (44) in 74% yield [PTSA (0.5 mol equiv.); reaction time 18 h], oil; $v_{\text {max }} 3300,2220,1560$, and 690 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.58$ and $7.33\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 15\right.$ and 25 Hz$)$, $4.68\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 25 \mathrm{~Hz}, \mathrm{NH}\right)$, and $2.88\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 30 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}(50.3$ $\mathrm{MHz}) 125.9$ and $114.5(\mathrm{C}), 135.9(\times 2), 129.0(\times 2), 128.3,57.0$, and $48.4(\mathrm{CH}), 33.3,31.6,26.2$, and $23.9\left(\mathrm{CH}_{2}\right) ; m / z 280.0489$ and 278.0508 (29 and $14 \%, M^{+}$. Calc, for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Se}: M$, 280.0478 and 278.0487), 158 (29), 157 (24), 156 (16), 155 (16), 123 (53), and 81 (100).
trans-[2-(Phenylseleno)cycloheptyl] cyanamide (48). Prepared from cycloheptene (45) in 65% yield [PTSA (0.5 mol equiv.); reaction time 18 h], oil; $v_{\max } 3290,2220,1575$, and $69 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.57$ and $7.32\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{1} 15\right.$ and 25 Hz$), 4.50$ $\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}, \mathrm{NH}\right)$, and $3.08\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 50 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}(50.3$ $\mathrm{MHz}) 127.3$ and $115.0(\mathrm{C}), 135.3(\times 2), 129.2(\times 2), 128.2,60.5$, and $51.2(\mathrm{CH}), 32.7,31.2,27.4,26.3$, and $22.4\left(\mathrm{CH}_{2}\right) ; m / z$ 294.0674 and 292.0684 (20 and $10 \%, M^{+} . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 294.0635$ and 292.0643), 158 (22), 157 (17), 156 (11), 155 (11), 137 (37), and 95 (100).
trans-[2-(Phenylseleno)cyclo-octyl]cyanamide (49). Prepared from (Z)-cyclo-octene (46) in 44% yield [PTSA (0.5 mol equiv.); reaction time 18 h$]$, oil; $v_{\max } 3300,2220,1580$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.57$ and $7.31\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 15\right.$ and 25 Hz$), 4.69$ $\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 17 \mathrm{~Hz}, \mathrm{NH}\right)$, and $3.24\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 40 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}(50.3$ $\mathrm{MHz}) 127.2$ and $115.0(\mathrm{C}), 135.3(\times 2), 129.2(\times 2), 128.3,59.3$, and $50.2(\mathrm{CH}), 31.7,29.0,26.8,26.2,25.1$, and $23.8\left(\mathrm{CH}_{2}\right) ; m / z$ 308.0837 and 306.0828 (29 and $14 \%, M^{+} . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 308.0791$ and 306.0800), 158 (48), 157 (44), 156 (24), 155 (29), 151 (72), and 109 (100).
[2-(Phenylseleno) cyclododecyl]cyanamide (19). Prepared from cyclododecene (16) ($7: 3$ mixture of E - and Z-stereoisomer) in 76% yield (reaction time 24 h). Compound (19) was a $7: 3$ mixture of stereoisomers as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy; $v_{\max } 3340,2220,1575$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.55$ and $7.30\left(10 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 15\right.$ and 12.5 Hz$), 4.47(1 \mathrm{H}$, minor, m , $w_{\frac{1}{2}} 13 \mathrm{~Hz}, \mathrm{NH}$), 4.11 (1 H , major, $\mathrm{m}, w_{\frac{1}{2}} 16 \mathrm{~Hz}, \mathrm{NH}$), $3.45(1 \mathrm{H}$, major, $\mathrm{m}, w_{\frac{1}{2}} 17 \mathrm{~Hz}$), and $3.31\left(3 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 13 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz})$ 115.4 (C), 135.3, 134.5, 129.4, 129.3, 128.5, 128.2, 128.0, 57.0, 56.5, 49.0, and $48.3(\mathrm{CH}), 30.2,29.4,27.2,26.6,24.5,24.1,24.0,23.8$, 23.2, 22.1, 21.9, 21.8, and $20.1\left(\mathrm{CH}_{2}\right) ; m / z 364.1398$ and 362.1512 (32 and $12 \%, M^{+} . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 364.1418$ and 362.1425), $207.1866\left(31, \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2}\right.$ requires m / z, 207.1861), $180.1805\left(8, \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}\right.$ requires $m / z, 180.1752$), and 156.9564 and 154.9578 (100 and $51, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}$ requires $m / z, 156.9556$ and 154.9565).
[1-(Phenylselenomethyl)cyclohexyl]cyanamide (26). ${ }^{27}$ Prepared from methylenecyclohexane (22) in 71% yield (reaction
time 24 h), oil; $v_{\max } 3360,2210,1570$, and $690 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 7.57$ and $7.28\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 10 Hz$), 3.96(1 \mathrm{H}$, $\left.\mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}, \mathrm{NH}\right)$, and $3.15(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}(20.1 \mathrm{MHz}) 130.0,113.7$, and $57.7(\mathrm{C}), 133.1(\times 2), 129.2(\times 2)$, and $127.3(\mathrm{CH}), 40.9,34.7$ $(\times 2), 24.9$, and $21.6(\times 2)\left(\mathrm{CH}_{2}\right) ; m / z 294.0702$ and $292.0642(12$ and $6 \%, M^{+}$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Se}: M, 294.0635$ and 292.0643), 252.0448 and 250.0421 (3 and 2. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Se}: m / z$, 252.0417 and 250.0425), 171.9812 and 169.9838 (100 and 50. Calc. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Se}: m / z, 171.9791$ and 169.9799), 157.9622 and 155.9625 (78 and 41. Calc. for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Se}: m / z, 157.9635$ and 155.9597), 156.9552 and 154.9631 (41 and 31. Calc. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Se}$: $m / z, 156.9556$ and 154.9564), 137.1088 (8. Calc. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2}$: $m / z, 137.1079$), and 123.0956 (80. Calc. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2}: m / z$, 123.0922).
trans-[1-Methyl-2-(phenylseleno)cyclohexyl]cyanamide (43). ${ }^{27}$ Prepared from 1 -methylcyclohexene (42) in 78% yield (reaction time 24 h), oil; $v_{\max } 3330,2210,1570$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(80 \mathrm{MHz}) 7.59$ and $7.30\left(5 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 13\right.$ and 9 Hz$), 4.38(1$ $\left.\mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 12 \mathrm{~Hz}, \mathrm{NH}\right), 3.19(1 \mathrm{H}, \mathrm{dd}, J 12$ and 5 Hz$)$, and $1.32(3$ $\mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 113.7$ and $58.6(\mathrm{C}), 134.6(\times 2), 129.2(\times 2)$, 127.8 , and $55.6(\mathrm{CH}), 37.3,32.2,26.3$, and $22.2\left(\mathrm{CH}_{2}\right)$, and 21.5 (Me); $m / z 294$ and 292 (28 and $14 \%, M^{+}$), 253 (1), 251 (1), 157 (22), 155 (15), and 137 (100).
endo,endo-N-Cyano-2,5-bis(phenylseleno)-9-azabicyclo[4.2.1]nonane (52) and endo,endo- N -cyano-2,6-bis(phenyl-seleno)-9-azabicyclo[3.3.1]nonane (53). Obtained from cyclo-octa-1,5-diene (51) in 83% yield (reaction time 18 h) as an unresolved mixture [ratio (52): (53) 3:2]; $v_{\max } 2$ 200, 1570 , and $690 \mathrm{~cm}^{-1} ; m / z 462,460$, and $458\left(3,3\right.$, and $\left.1 \%, M^{+}\right), 305(53), 303$ (26), 263 (4), 261 (2), 157 (100), 155 (51), 147 (79), and 105 (45); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.54$ and $7.28\left(20 \mathrm{H}, 2 \times \mathrm{m}, w_{\frac{1}{2}} 12.5\right.$ and 15 Hz$)$. Compound (52); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.16\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 17 \mathrm{~Hz}\right)$ and 3.75 [$2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 11 \mathrm{~Hz}$, overlapped with m at $\delta 3.78$ of (53)]. Compound ${ }^{2}(53) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 3.78\left[2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 11 \mathrm{~Hz}\right.$, overlapped with m at $\delta 3.75$ of (52)] and $3.43\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 12 \mathrm{~Hz}\right)$.

Cyanamidoselenenylation of Alkenes. Method B. General Procedure.-A solution of benzeneselenenyl chloride (76 mg , 0.4 mmol) in dry dichloromethane (2 ml) was added during 1 h , in the dark and under argon, to a stirred solution of 5α-cholest-2-ene (1) ($121 \mathrm{mg}, 0.33 \mathrm{mmol}$), cyanamide ($275 \mathrm{mg}, 6.5 \mathrm{mmol}$), and silver tetrafluoroborate $(83 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry dichloromethane $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred at $25^{\circ} \mathrm{C}$ for 2 h , poured into water, and extracted with ethyl acetate. The extract was filtered through Celite 545 , washed with water, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography of the residue (hexane; then benzene-ethyl acetate; $98: 2$) gave 3α -cyanoamino- 2β-phenylseleno- 5α-cholestane (40) ($46 \mathrm{mg}, 25 \%$) and 2β-cyanoamino- 3α-phenylseleno- 5α-cholestane (41) (31 $\mathrm{mg}, 16 \%$).
erythro[1-Butyl-2-(phenylseleno)hexyl]cyanamide (35) was also prepared by this method from (E)-dec-5-ene (29) in 62% yield (reaction time 1 h at $0^{\circ} \mathrm{C} ; 4 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$).

Reductive Removal of the Phenylseleno Group.-To a solution of ethyl (2β-phenylseleno- 5α-cholestan- 3α-yl)carbamate (2) (51 $\mathrm{mg}, 0.08 \mathrm{mmol}$) in dry toluene (1 ml) at $120^{\circ} \mathrm{C}$ was added, under argon and during 1 h , a solution of triphenyltin hydride (84 mg , 0.25 mmol) in dry toluene (1 ml). The reaction mixture was refluxed for an additional 2 h and then cooled, poured into water, and extracted with ethyl acetate; the extract was washed with water. Column chromatography (benzene) gave ethyl ($5 \alpha-$ cholestan- 3α-yl)carbamate (54) (32 mg, 88%), m.p. $119-121^{\circ} \mathrm{C}$ (from MeOH) $[\alpha]_{\mathrm{D}}+31^{\circ}(c 0.08) ; v_{\text {max }} 3400,1700$, and 1500 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.93\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 22 \mathrm{~Hz}, \mathrm{NH}\right), 4.10(2 \mathrm{H}, \mathrm{q}, J 7$ $\mathrm{Hz}), 3.88\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 17.5 \mathrm{~Hz}\right), 1.24(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, J$ $7 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.79(3 \mathrm{H}, \mathrm{s})$, and $0.65(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 155.8,42.6$, and $36.0(\mathrm{C}), 56.6,56.3,54.6,46.3,42.3$,
$40.7,35.8,35.5$, and $28.0(\mathrm{CH}), 60.5,40.0,39.5,36.2,33.3,33.0$, 32.0, 28.5, 28.2, 26.4, 24.1, 23.8, and $20.8\left(\mathrm{CH}_{2}\right), 22.8,22.5,18.7$, $14.6,12.1$, and $11.4(\mathrm{Me}) ; m / z 459\left(5, M^{+}\right), 413.3634\left(82, M^{+}-\right.$ EtOH. $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}$ requires $m / z, 413.3656$), 398.3395 (93, $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{NO}$ requires $m / z, 398.3369$), $370.3539\left(100, \mathrm{C}_{27} \mathrm{H}_{46}\right.$ requires $m / z, 370.3598$), and $355.3342\left(64, \mathrm{C}_{26} \mathrm{H}_{43}\right.$ requires m / z, 355.3363).
3α-Cyanoamino-5 α-cholestane $\quad[(5 \alpha$-cholestan- $3 \alpha-y l)$ cyanamide] (55). To a solution of 3α-cyanoamino 1-2 β-phenylseleno5α-cholestane (40) $(60 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry toluene $(1 \mathrm{ml})$ at $120^{\circ} \mathrm{C}$ was added, under argon and during 1 h , a solution of triphenyltin hydride ($111 \mathrm{mg}, 0.32 \mathrm{mmol}$) in dry toluene (1 ml). The reaction mixture was refluxed for 1 h , and after usual workup and column chromatography (hexane-ethyl acetate; 95:5 and $85: 15)$, gave compound (55) ($41 \mathrm{mg}, 94^{\circ} \%$), m.p. $179-180^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathbf{D}}+24^{\circ}(c 0.2) ; v_{\max } 3380$ and $2210 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 3.60\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 13.5 \mathrm{~Hz}\right), 3.44(1 \mathrm{H}$, br d,$J 3.5 \mathrm{~Hz}$, NH), $0.90(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.79(3 \mathrm{H}, \mathrm{s})$, and $0.65(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}(20.1 \mathrm{MHz}) 115.5,42.6$, and 36.1 (C), 56.6 , $56.4,54.4,51.6,39.5,35.8,35.5$, and $28.0(\mathrm{CH}), 40.0,39.6,36.2$, $32.6,32.2,31.9,28.3,28.2,25.7,24.2,23.9$, and $20.8\left(\mathrm{CH}_{2}\right), 22.8$, $22.5,18.7,12.1$, and $11.4(\mathrm{Me}) ; m / z 412.3816\left(25 \%, M^{+}\right.$. $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~N}_{2}$ requires $M, 412.3816$), 397.3593 ($27, \mathrm{C}_{27} \mathrm{H}_{45} \mathrm{~N}_{2}$ requires $m / z, 397.3580), 370.3622\left(20, \mathrm{C}_{27} \mathrm{H}_{46}\right.$ requires m / z, 370.3597), and $257.2025\left(100, \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2}\right.$ requires $m / z, 257.2016$).

Oxidative Fragmentation of β-Phenylseleno Carbamates. General Procedure.-To a solution of ethyl (2β-phenylseleno- $5 \alpha-$ cholestan- $3 \alpha-\mathrm{yl}$)carbamate (2) $(250 \mathrm{mg}, 0.4 \mathrm{mmol}$) in THF (50 $\mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.09 \mathrm{ml}, 0.8 \mathrm{mmol})$. After 25 h at $25^{\circ} \mathrm{C}$ the reaction mixture was poured into water, extracted with ethyl acetate, and the extract was washed with water. Column chromatography of the residue (hexane-ethyl acetate; 95:5) gave ethyl (5α-cholest-1-en- $3 \alpha-y l$) carbamate (3) ($132 \mathrm{mg}, 71 \%$), m.p. $93-94^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}-13^{\circ}(c 0.28$); $v_{\max } 3400,1705$, and $1500 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 6.05(1 \mathrm{H}, \mathrm{dd}, J$ 10 and 1 Hz$), 5.48(1 \mathrm{H}$, dd, $J 10$ and 3.8 Hz$), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8$ $\mathrm{Hz}, \mathrm{NH}), 4.11(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz})$, ca. $4.1\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} c a .15 \mathrm{~Hz}\right), 1.24$ $(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.81$ ($3 \mathrm{H}, \mathrm{s}$), and $0.67(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 155.6,42.6$, and $37.7(\mathrm{C})$, $140.3,124.0,56.5,56.2,51.2,42.6,39.9,35.7,35.6$, and $27.9(\mathrm{CH})$, $60.6,39.9,39.5,36.1,32.7,31.9,28.2,27.9,24.1,23.8$, and 21.1 $\left(\mathrm{CH}_{2}\right), 22.7,22.5,18.6,14.6,14.2$, and $12.1(\mathrm{Me}) ; m / z 457.3907$ $\left(5 \%, M^{+} . \mathrm{C}_{30} \mathrm{H}_{51} \mathrm{NO}_{2}\right.$ requires $\left.M, 457.3919\right), 442.3712$ (2, $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{NO}_{2}$ requires $m / z, 442.3685$), $428.3553\left(16, \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{NO}_{2}\right.$ requires $m / z, 428.3528), 411.3522\left(20, \mathrm{C}_{28} \mathrm{H}_{45} \mathrm{NO}\right.$ requires m / z, 411.3501), $368.3452\left(100, \mathrm{C}_{27} \mathrm{H}_{44}\right.$ requires $m / z, 368.3443$), and 353.3184 ($22, \mathrm{C}_{26} \mathrm{H}_{41}$ requires $m / z, 353.3209$).

The following allylic carbamates were prepared by an analogous procedure.

Ethyl [(E)-1-Butylhex-2-enyl] carbamate (56). Prepared from erythro-ethyl [1-butyl-2-(phenylseleno)hexyl]carbamate (30) in 79% yield, oil;, $v_{\max } 3430,1700$, and $1500 \mathrm{~cm}^{-1} ; \delta_{H}(200 \mathrm{MHz})$ $5.57(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and 6.6 Hz$), 5.31(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and 6.3 Hz$)$, $4.63\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 25 \mathrm{~Hz}, \mathrm{NH}\right), 4.11(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz})$, ca. $4.1(1 \mathrm{H}, \mathrm{m}$, $\left.w_{\frac{1}{2}} c a .30 \mathrm{~Hz}\right), 1.23(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz})$, and 0.88 $(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{c}}(50.3 \mathrm{MHz}) 156.0(\mathrm{C}), 131.1,130.7$, and 52.8 $(\mathrm{CH}), 60.5,35.3,34.2,27.8,22.4$, and $22.3\left(\mathrm{CH}_{2}\right), 14.5,13.9$, and 13.5 (Me); $m / z 227.1871\left(3 \%, M^{+} . \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{2}\right.$ requires M, 227.1884), 198 (6), 184 (21), $170.1177\left(100, \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{2}\right.$ requires $m / z, 170.1180$), 154 (6), and 139 (10).

Cyclohexyl [(E)-1-Butylhex-2-enyl]carbamate (57). Prepared from erythro-cyclohexyl[1-butyl-2-(phenylseleno)hexyl]carbamate (31) in 84% yield, oil; $v_{\max } 3430,1695$, and $1500 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.57(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and 6.5 Hz$), 5.31(1 \mathrm{H}, \mathrm{dd}, J$ 15.3 and 6.3 Hz$), 4.63\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 27 \mathrm{~Hz}\right), 4.48\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 27 \mathrm{~Hz}\right.$, $\mathrm{NH}), 4.05\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 30 \mathrm{~Hz}\right)$, and $0.88(6 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(50.3$ $\mathrm{MHz}) 155.4(\mathrm{C}), 130.8,130.6,72.5$, and $52.6(\mathrm{CH}), 35.1,34.0$,
31.8, 27.6, 25.2, 23.5, 22.2, and $22.1\left(\mathrm{CH}_{2}\right), 13.7$ and $13.3(\mathrm{Me})$; $m / z 281.2372\left(1 \%, M^{+} . \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{2}\right.$ requires $\left.M, 281.2353\right)$, 224.1652 (32, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2}$ requires m / z, 224.1649), 142.0814 ($100, \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires $m / z, 142.0866$), and 138 (6).

Benzyl [(E)-1-Butylhex-2-enyl]carbamate (58). Prepared from erythro-benzyl [1-butyl-2-(phenylseleno)hexyl]carbamate (32) in 81% yield, oil; $v_{\text {max }} 3420,1700,1500$, and $690 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.33\left(5 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 12.5 \mathrm{~Hz}\right), 5.57(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.6 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and 6.3 Hz$), 5.10(2 \mathrm{H}, \mathrm{s}), 4.64(1 \mathrm{H}$, $\left.\mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}, \mathrm{NH}\right), 4.09\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 30 \mathrm{~Hz}\right)$, and $0.88(6 \mathrm{H}, \mathrm{t}, J 7$ $\mathrm{Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 155.8$ (C), 131.3, 130.7, 128.4, 128.0, and 53.0 $(\mathrm{CH}), 66.5,35.3,34.2,27.8,22.4$, and $22.3\left(\mathrm{CH}_{2}\right), 13.9$ and 13.5 (Me); $m / z \quad 289.2006\left(1 \%, M^{+} . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}\right.$ requires M, 289.2042), 232.1355 ($78, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires $m / z, 232.1337$), 198.1494 (23, $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires $m / z, 198.1494$), 188 (100), and $154.1602\left(11, \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}\right.$ requires $\left.m / z, 154.1596\right)$.
(E)-Dec-6-en-5-amine (59.--To a mixture of benzyl [(E)-1-butylhex-2-enyl]carbamate (58) ($45 \mathrm{mg}, 0.16 \mathrm{mmol}$) and dry $\mathrm{NaI}(94 \mathrm{mg}, 0.62 \mathrm{mmol})$ in dry acetonitrile $(0.4 \mathrm{ml})$ was added trimethylsilyl chloride ($67 \mathrm{mg}, 0.63 \mathrm{mmol}$) and the reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 6.5 h . After the mixture had cooled to $25^{\circ} \mathrm{C}$, a saturated solution of hydrogen chloride (0.47 mmol) in methanol was added and the mixture was stirred for 30 min . The reaction mixture was then poured into ethyl acetate and extracted with 0.1% aq. HCl . The aqueous layer was saturated with NaCl , basified with aq. KOH , and extracted with ethyl acetate. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated off to give amine (59) ($17 \mathrm{mg}, 70 \%$), oil; $v_{\text {max }} 3300$ and $1590 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.70\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 32 \mathrm{~Hz}\right)$, $5.39\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 32 \mathrm{~Hz}\right), 3.60\left(3 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 80 \mathrm{~Hz}\right)$, and $0.89(6 \mathrm{H}, \mathrm{t}$, $J 7 \mathrm{~Hz}$). Acetamide derivative of (59), oil; $v_{\max } 3430,1720,1650$, and $1505 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.58(1 \mathrm{H}, \mathrm{dt}, J 15.5$ and 6.6 Hz$)$, $5.32(1 \mathrm{H}, \mathrm{dd}, J 15.5 \mathrm{and} 6.3 \mathrm{~Hz}), 4.38\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{3}{2}} 32 \mathrm{~Hz}\right), 1.98$ (3 $\mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$, and $0.88(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; m / z 197.1844$ $\left(8 \%, M^{+} . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}\right.$ requires $\left.M, 197.1779\right), 140.1090$ (100 , $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}$ requires $m / z, 140.1069$), and $128.1084\left(6, \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}\right.$ requires $m / z, 128.1075$).

Oxidative Fragmentation of β-Phenylseleno Cyanamides. General Procedure.-(a) With O_{3}. A solution of erythro-[1-butyl-2-(phenylseleno)hexyl]cyanamide (35) ($110 \mathrm{mg}, 0.32$ mmol) in dichloromethane (60 ml) was cooled to $-78^{\circ} \mathrm{C}$ under argon, and ozone was introduced into the solution until the colour of the solution became blue. Then argon was bubbled through the solution to expel excess of ozone and the mixture was heated under reflux for 2 h , then poured into water, and extracted with dichloromethane; the extract was washed with water, and column chromatography of the residue (hexaneethyl acetate; 9:1) gave (E)-1-butylhex-2-enylcyanamide (63) ($18 \mathrm{mg}, 30 \%$) and [1-butyl-2-(phenylseleno)hexylidene]cyanamide (65) ($55 \mathrm{mg}, 50 \%$. Compound (63), oil; $v_{\max } 3380,3330$, and $2210 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.69(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and 6.7 Hz$)$, $5.32(1 \mathrm{H}$, dd, $J 15.3$ and 7.7 Hz$), 3.57\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 24 \mathrm{~Hz}\right)$, and $0.91(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(20.1 \mathrm{MHz}) 134.5,129.0$, and $58.4(\mathrm{CH})$, $34.3,34.1,27.7,22.2$, and $22.0\left(\mathrm{CH}_{2}\right), 13.7$ and $13.4(\mathrm{Me}) ; \mathrm{m} / \mathrm{z} 180$ $\left(1 \%, M^{+}\right), 151(7), 139(15), 137(12)$, and 123 (100).

Compound (65), oil; $v_{\text {max }} 2180,1590$, and $690 \mathrm{~cm}^{-1} ; \lambda_{\text {max }} 225$ (9360) and $240(10110) \mathrm{nm} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.38\left(5 \mathrm{H}, \mathrm{m}, w_{1} 50\right.$ $\mathrm{Hz}), 3.73(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}), 2.78\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 24 \mathrm{~Hz}\right)$, and $0.92(6 \mathrm{H}$, $\mathrm{t}, J 7.2 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 136.6,129.5,129.4$, and $50.5(\mathrm{CH})$, 39.0, 31.0, 30.3, 29.3, and $22.4(\times 2)\left(\mathrm{CH}_{2}\right), 13.9$ and $13.6(\mathrm{Me})$; $m / z 336.1096$ and 334.1083 (33 and $16 \%, M^{+} . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Se}$ requires $M, 336.1104$ and 334.1113), 225 (20), and 230 (100).
(b) With $\mathrm{H}_{2} \mathrm{O}_{2}$. To a solution of erythro-[1-butyl-2(phenylseleno)hexyl]cyanamide (35) ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) in diethyl ether (50 ml) at $0^{\circ} \mathrm{C}$ was added 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.06 \mathrm{ml}$. 1.16 mmol). After 4 h at $25^{\circ} \mathrm{C}$ the reaction mixture was poured
into water, extracted with diethyl ether, and the extract was washed with water. Chromatography of the extract on a chromatotron (hexane-ethyl acetate; 95:5) gave [(E)-1-butyl-hex-2-enyl]cyanamide (63) ($16 \mathrm{mg}, 30 \%$) and [(E)-1-butyl-2-hex-2-enylidene] cyanamide ($\mathbf{6 6}$) $(31 \mathrm{mg}, 58 \%$). Compound (66), from NMR data, was shown to be a $c a .1: 1$ mixture of the stereoisomers in the cyanimide group; oil; $v_{\text {max }} 2180,1630$, and $1555 \mathrm{~cm}^{-1} ; \lambda_{\text {max }} 260 \mathrm{~nm}(18540) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.02-6.17(2 \mathrm{H})$, $2.85-2.61(2 \mathrm{H}), 2.30\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 24 \mathrm{~Hz}\right)$, and $0.96(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$; $\delta_{\mathrm{c}}(50.3 \mathrm{MHz}) 151.5,150.7,13^{2} 0.0$, and $127.3(\mathrm{CH}), 36.3,35.4$, 35.3, 35.1, 30.3, 29.2, 22.8, 22.5, and $21.5\left(\mathrm{CH}_{2}\right)$, and $13.8(\mathrm{Me})$; $m / z \quad 179.1532\left(2 \%, M^{+}+1 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2}\right.$ requires $M^{+}+1$, 179.1548), $135.0892\left(100, \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}\right.$ requires $\left.m / z, 135.0922\right)$, and $121.0776\left(45, \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2}\right.$ requires $\left.m / z, 121.0765\right)$.

As shown in Table 4, the following cyanamides and cyanimides were prepared in an analogous way.
3α-Cyanoamino- 5α-cholest-1-ene (4). M.p. $125^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}-14^{\circ}(c 0.25)$; $v_{\text {max }} 3390$ and $2200 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 6.19(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 5.22(1 \mathrm{H}$, ddd, $J 10,4.4$, and 1.5 $\mathrm{Hz}), 3.73\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 10 \mathrm{~Hz}\right), 3.42(1 \mathrm{H}, \mathrm{brd}, J 6 \mathrm{~Hz}, \mathrm{NH}), 0.90(3$ $\mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}), 0.81(3 \mathrm{H}, \mathrm{s})$, and $0.66(3 \mathrm{H}$, s); $m / z 410.3635\left(100 \%, M^{+} . \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2}\right.$ requires $\left.M, 410.3659\right)$, $395.3440\left(35, \mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{2}\right.$ requires $m / z, 395.3425$), 368.3472 (67 , $\mathrm{C}_{27} \mathrm{H}_{44}$ requires $m / z, 368.3440$), and 255 (93).

3-Cyanoimino- 5α-cholest-1-ene (60). From ${ }^{1} \mathrm{H}$ NMR data it was shown that, in solution, this compound was a ca. $7: 3$ mixture of the stereoisomers in the cyanimide group; m.p. $111-112^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}+108^{\circ}(c 0.1) ; v_{\text {max }} 2180,1700$, and 1565 $\mathrm{cm}^{-1} ; \lambda_{\text {max }} 267 \mathrm{~nm}(20810) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 7.20$ and $7.14(1 \mathrm{H}$, $2 \times \mathrm{d}$, each $J 10.1 \mathrm{~Hz}), 6.60$ and $6.16(1 \mathrm{H}, 2 \times \mathrm{d}$, each $J 10.1$ $\mathrm{Hz}), 0.98$ and $0.97(3 \mathrm{H}, 2 \times \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}$, $J 6.6 \mathrm{~Hz}$), and $0.69(3 \mathrm{H}, \mathrm{s}) ; m / z 408.3514\left(60 \%, M^{+} . \mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2}\right.$ requires $M, 408.3504), 393.3262\left(25, \mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2}\right.$ requires m / z, 393.3270), $365.2943\left(9, \mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2}\right.$ requires $m / z, 365.2957$), $323.2488\left(14, \mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2}\right.$ requires $m / z, 323.2478$), 300.2832 (26 , $\mathrm{C}_{22} \mathrm{H}_{36}$ requires $m / z, 300.2817$), $295.2189\left(38, \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2}\right.$ requires $m / z, 295.2174$), and $146.0841\left(100, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2}\right.$ requires $m / z, 146.0844$).
2β-Cyanoamino-5 5 -cholest-3-ene (61). Amorphous; $[\alpha]_{\mathrm{D}}+25^{\circ}$ (c 0.13); $v_{\text {max }} 3390$ and $2210 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.62\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}}\right.$ $7.5 \mathrm{~Hz}), 3.88\left(1 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 20 \mathrm{~Hz}\right), 3.42(1 \mathrm{H}, \mathrm{brd}, J 7 \mathrm{~Hz}, \mathrm{NH}), 0.90$ $(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{s})$, and $0.66(3 \mathrm{H}$, s); $\delta_{\mathrm{c}}(50.3 \mathrm{MHz}) 115.5,42.7$, and 33.7 (C), $136.7,123.0,56.2(\times 2)$, $53.5,51.1,45.5,35.7,35.0$, and $28.0(\mathrm{CH}), 41.3,39.8,39.5,36.1$, $31.8,28.2,27.1,24.1,23.8$, and $21.1\left(\mathrm{CH}_{2}\right), 22.8,22.5,18.6,13.8$, and $12.1(\mathrm{Me}) ; m / z 410.3655\left(100 \%, M^{+} . \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2}\right.$ requires M, 410.3658), $395.3437\left(41, \mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{2}\right.$ requires $\left.m / z, 395.3424\right)$, $368.3421\left(36, \mathrm{C}_{27} \mathrm{H}_{44}\right.$ requires $m / z, 368.3441$), and 255 (64).

2 -Cyamoimino- 5α-cholest-3-ene (62). From NMR data it was shown that this compound in solution was a ca. 7:3 mixture of stereoisomers in the cyanimide group; m.p. $115-115.5^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}+89^{\circ}(c 0.21) ; v_{\text {max }} 2180,1610$, and $1560 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }} 267 \mathrm{~nm}(15830) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 6.75-6.24(2 \mathrm{H}), 0.90(3 \mathrm{H}, \mathrm{d}$, $J 6.5 \mathrm{~Hz}), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}), 0.84$ and $0.82(3 \mathrm{H}, 2 \times \mathrm{s})$, and $0.66(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(50.3 \mathrm{MHz}) 190.8,188.8,114.5,42.8$, and $40.5(\mathrm{C})$, $156.2,155.8,128.0,123.8,56.4,56.3,53.5,47.4,35.9,35.1$, and 28.1 (CH), 48.3, 47.8, 39.7, 36.3, 31.9, 28.2, 26.5, 26.4, 24.2, 24.0, and $21.2\left(\mathrm{CH}_{2}\right), 22.9,22.7,18.8,12.8,12.6$, and $12.2(\mathrm{Me}) ; m / z$ $408.3486\left(10 \%, M^{+} . \mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2}\right.$ requires $\left.M, 408.3504\right), 393.3281$ ($4, \mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2}$ requires $m / z, 393.3269$), $253.1658\left(26, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2}\right.$ requires $m / z, 253.1705), 231(37), 145.0798\left(20, \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2}\right.$ requires $m / z, 145.0765$), and $123.1160\left(100, \mathrm{C}_{9} \mathrm{H}_{15}\right.$ requires m / z, 123.1174).
[(E)-Cyclododec-2-enyl] cyanamide (21). M.p. $51-52^{\circ} \mathrm{C}$ (from pentane); $v_{\text {max }} 3380,3220$, and $2220 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 5.70(1$ H , ddd, $J 15.2,9.9$, and 4.8 Hz), $5.32(1 \mathrm{H}$, ddd, $J 15.2,8.8$, and 1.2 Hz), and $3.65\left(2 \mathrm{H}, \mathrm{m}, w_{\frac{1}{2}} 34 \mathrm{~Hz}\right)$; $\delta_{\mathrm{c}}(20.1 \mathrm{MHz}) 115.5(\mathrm{C})$, 135.8 , 129.1, and $59.1(\mathrm{CH}), 32.6,31.5,25.7(\times 2), 24.9,24.6,24.3(\times 2)$,
and $22.7\left(\mathrm{CH}_{2}\right) ; m / z 206.1781\left(40 \%, M^{+} . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2}\right.$ requires M, 206.1783), 205.1704 ($40, \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2}$ requires $m / z, 205.1704$), 165 (100), and 163 (73).
[(E)-1-Butylhex-2-enylidene]cyanamide (66) from Selenide (65).-To a solution of [1-butyl-2-(phenylseleno)hexylidene]cyanamide (65) ($60 \mathrm{mg}, 0.17 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ was added 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(0.072 \mathrm{ml}, 0.71 \mathrm{mmol})$ and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The usual work-up and chromatography on a chromatotron (hexane-ethyl acetate; 95:5) gave compound (66) ($25 \mathrm{mg}, 78 \%$).
3α-Cyanoamino- 5α-cholest-1-ene (4).-A mixture of $3 \alpha-$ amino- 5α-cholest- 1 -ene ($162 \mathrm{mg}, 0.42 \mathrm{mmol}$), ${ }^{12}$ acetic acid (0.03 $\mathrm{ml}, 0.56 \mathrm{mmol}$), and sodium cyanate ($43 \mathrm{mg}, 0.66 \mathrm{mmol}$) was refluxed for 1 h . After usual work-up, the crude urea (180 mg) was dissolved in dry pyridine (2.5 ml) and methanesulphonyl chloride ($0.06 \mathrm{ml}, 0.82 \mathrm{mmol}$) was added to the mixture at $0^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$, followed by the usual work-up and column chromatography (hexane-ethyl acetate; 9:1), the allylic cyanamide (4) ($155 \mathrm{mg}, 90 \%$) was obtained.

Acknowledgements

This work was supported by the Investigation Programme No. PB0406 of the Dirección General de Investigación Científica y Técnica. E. I. L. thanks the Ministerio de Educación y Ciencia for a fellowship.

References

1 C. Paulmier, 'Selenium Reagents and Intermediates in Organic Synthesis,' ed. J. E. Baldwin, Pergamon, Oxford, 1986, p. 182; T. G. Back, 'Organoselenium Chemistry,'ed. D. Liotta, Wiley-Interscience, New York, 1987, p. 56.
2 A. Bewick, D. E. Coe, G. B. Fuller, and J. M. Mellor, Tetrahedron Lett., 1980, 21, 3827; A. Toshimitsu, T. Aoai, H. Owada, S. Uemura, and M. Okano, J. Org. Chem., 1981, 46, 4727.
3 D. H. R. Barton, M. R. Britten-Kelly, and D. Ferreira, J. Chem. Soc., Perkin Trans. 1, 1978, 1682.
4 J. N. Denis, J. Vicens, and A. Krief, Tetrahedron Lett., 1979, 2697; A. Hassner and A. S. Amarasekara, ibid., 1987, 28, 5185.
5 T. Hayama, S. Tomoda, Y. Takeuchi, and Y. Nomura, Tetrahedron Lett., 1982, 23, 4733.

6 A. Toshimitsu, S. Uemura, and M. Okano, J. Org. Chem., 1983, 48, 5246.

7 C. G. Francisco, E. I. León, J. A. Salazar, and E. Suárez, Tetrahedron Lett., 1986, 27, 2513.
8 R. Hernández, E. I. León, J. A. Salazar, and E. Suárez, J. Chem. Soc., Chem. Commun., 1987, 312.
9 D. L. J. Clive, V. Farina, A. Singh, C. K. Wong, W. A. Kiel, and S. M. Menchen, J. Org. Chem., 1980, 45, 2120.
10 D. L. J. Clive, J. Chem. Soc., Chem. Commun., 1974, 100; H. J. Reich, J. Org. Chem., 1974, 39, 428; D. L. J. Clive, C. K. Wong, W. A. Kiel, and S. M. Menchen, J. Chem. Soc., Chem. Commun., 1978, 379; S. Murata and T. Suzuki, Chem. Lett., 1987, 849.
11 R. R. Webb II and S. Danishefsky, Tetrahedron Lett., 1983, 24, 1357.
12 P. Longevialle, Tetrahedron, 1969, 25, 3075.
13 M. R. Roberts and R. H. Schlessinger, J. Am. Chem. Soc., 1981, 103, 724.

14 E. L. Eliel, 'Stereochemistry of Carbon Compounds,' McGraw-Hill, New York, 1962, p. 253; T. Clark and M. A. McKervey, 'Comprehensive Organic Chemistry,' eds. D. H. R. Barton and W. D. Ollis, Pergamon, Oxford, 1979, p. 64.
15 B. R. Baker and T. Neilson, J. Org. Chem., 1964, 29, 1051.
16 M. Barrelle and M. Apparu, Tetrahedron, 1977, 33, 1309.
17 D. L. J. Clive, G. J. Chittattu, V. Farina, W. A. Kiel, S. M. Menchen, C. G. Russell, A. Singh, C. K. Wong, and N. J. Curtis, J. Am. Chem. Soc., 1980, 102, 4438.
18 A. Stern and E. I. Becker, J. Org. Chem., 1962, 27, 4052.
19 K. C. Nicolaou and N. A. Petasis, 'Selenium in Natural Products Synthesis,' ed. CIS, Inc., Philadelphia, 1984, p. 113.
20 A. Toshimitsu, H. Owada, T. Aoai, S. Uemura, and M. Okano, J. Chem. Soc., Chem. Commun., 1981, 546.
21 H. J. Reich and J. M. Renga, J. Org. Chem., 1975, 40, 3313.
22 G. A. Olah, S. C. Narang, B. G. Balaram Gupta, and R. Malhotra, J. Org. Chem., 1979, 44, 1247.
23 M. E. Hermes and F. D. Marsh, J. Org. Chem., 1972, 37, 2969; J. E. McMurry and A. P. Coppolino, ibid., 1973, 38, 2821.
24 R. Carrau, R. Freire, R. Hernández, and E. Suárez, Synthesis, 1986, 1055.

25 C. Betancor, R. Carrau, C. G. Francisco, and E. Suárez, Tetrahedron Lett., 1986, 27, 4783.
26 K. Ponsold and W. Ihn, Tetrahedron Lett., 1970, 1125; 1972, 4121.
27 D. L. J. Clive and A. Y. Mohammed, Heterocycles, 1989, 28, 1157.

Paper 0/00507J
Received 2nd February 1990 Accepted 3rd April 1990

[^0]: \dagger The choice of AgBF_{4} was based on the one hand on the low nucleophilicity of $\mathrm{BF}_{4}{ }^{-}$and on the other that HBF_{4} behaved as the best acid catalyst in the carbamatoselenenylation reaction when NPSP was used as the source of electrophilic selenium.
 \ddagger When the reactions were performed with lesser amounts of carbamate (e.g., 10 mmol) smaller yields were observed, even with longer reaction times.
 \S For an intramolecular version of this reaction see refs. 9 and 11.

[^1]: * The erythro and threo stereochemistries were assigned on the basis of mechanistic considerations: antiperiplanar opening by the carbamate of the episelenonium ion.

[^2]: * Deprotection of the benzyl allylic carbamate (58) by treatment with $\mathrm{Me}_{3} \mathrm{SiCl}-\mathrm{NaI}$ in acetonitrile ${ }^{22}$ at $30^{\circ} \mathrm{C}$ afforded the primary allylic amine (59) in 70\% yield.

[^3]: * Cyanimides are relatively unknown compounds. To our knowledge they have been prepared by addition of cyanogen azide to olefins ${ }^{23}$ and by treatment of cyanamides with lead tetra-acetate. ${ }^{24}$ \dagger Ethyl (2β-phenylseleno- $5 x$-cholestan- $3 x$-yl)carbamate.

